\begin{displaymath}
c
2
=
a
2
+
b
2
c^{2}=a^{2}+b^{2}
c2=a2+b2
\end{displaymath}
or you can
[a+b=c]
\begin{equation}
a^x+y \neq a^{x+y}
\end{equation}
λ
,
ξ
,
π
,
μ
,
ϕ
,
ω
\lambda,\xi,\pi,\mu,\phi,\omega
λ,ξ,π,μ,ϕ,ω
x
\sqrt{x}
x
x
2
+
y
\sqrt{x^{2}+\sqrt{y}}
x2+y
\qquad
2
3
\sqrt[3]{2}
32
√
[
x
2
+
y
2
]
\surd[x^2 + y^2]
√[x2+y2]如果仅仅需要根号,可以用\surd.
\begin{displaymath}
\mathbf{x}=
\left(\begin{array}{ccc}
x_{11} & x_{12} & \ldots\
x_{21} & x_{22} & \ldots\
\vdots & \vodts & \ddots
\end{array}\right)
\end{displaymath}
欢迎来到第一个上手博客
最新推荐文章于 2024-09-14 20:00:00 发布