多任务之线程

多任务之线程

多任务,顾名思义就是多个任务同时进行,多任务又有并行并发并行是真正的多任务(即一个CPU执行一个任务),但现在电脑大部分是4核,并没有那么多的CPU去执行任务,这时就用到了并发(时间片轮转,任务轮流让CPU执行),由于切换速度很快,我们就会感觉多个任务在同时执行。


线程

  • threading 模块的使用
import threading

def test1():
	pass   
   
def test2():
    pass

def main():
   t1 = threading.Thread(traget=test1)
   t2 = threading.Thread(traget=test2)
   t1.start()
   t2.start()

if __name__ == '__main__':
    main()

注:调用 Thread时,不会创建子线程,只是创建了一个对象,当这个对象调用 star() 时,子线程才会被建立并启动。

子线程线程在对象函数执行完毕后就会自动结束,而主线程必须在子线程完成后在结束,不然子线程会提前结束。


线程的数量

  • 使用 threading 中的 enumerate() 方法。
length = len(threading.enumerate())
print("当前运行线程数为:%d " % length)

用类封装线程代码

  • 为了让每个线程的封装性更完美,所以使用threading模块时,往往会定义一个新的子类class,只要继承threading.Thread就可以了,然后重写run方法
import threading

class Test(threading.Thread):
   def run(self):  # 这里必须用run
        print("这里运行代码。。。。。。")
        self.login()
        self.use()

    def login(self):
        print("这是登录的代码。。。。。")

    def use(self):
      print("这是使用的代码。。。。。")
      
if __name__ == '__main__':
    t = Test()
    t.start()     # 调用start()方法时,会直接运行run()方法

注:若类里面有多个方法,调用start()时,不会主动运行,需在 run()方法内自身调用方法

多线程的执行顺序是不确定的


多线程共享全局变量

函数里修改全局变量
num = 100
nums = [100, 200]

def tset1():
	global num
	num += 100
   
def test2():
	nums.append(300)

在一个函数中,对全局变量进行修改时,到底要不要用global,这就要看是否对全局变量标签指向进行了修改,若修改了指向,即全局变量标签指向了一个新的地方,那么久要用global进行声明,若只是修改了全局变量标签指向空间的数据时,就不必使用global进行声明

多线程里的共享全局变量
import threading
import time

g_num = 100  # 定义一个全局变量

def test1():
    global g_num
    g_num += 1
    print("---在test1里  g_num = %d ---" % g_num)

def test2():
    print("---在test2里  g_num = %d ---" % g_num)

def main():
    t1 = threading.Thread(target=test1)
    t2 = threading.Thread(target=test2)

    t1.start()
    time.sleep(1)

    t2.start()
    time.sleep(1)

    print("---在main里  g_num = %d ---" % g_num)

print("---创建线程前的 g_num = %d " % g_num)

if __name__ == '__main__':
    main()

在一个进程内的所有线程共享全局变量,很方便在多个线程间共享数据


共享全局变量的问题

  • 多个线程可以共享一个变量,意味着它们可以随意修改该变量,若它们都在同一时间修改,这就造成了一个问题——资源竞争,从而导致全局变量的值混乱
import threading
import time

g_num = 0

def test1(num):
    global g_num
    for i in range(num):
        g_num += 1
    print("----在test1中 g_num = %d " % g_num)

def test2(num):
    global g_num
    for i in range(num):
        g_num += 1
    print("----在test2中 g_num = %d " % g_num)

def main():
    t1 = threading.Thread(target=test1, args=(1000000,))  # 加逗号是因为传递的是列表
    t1.start()

    t2 = threading.Thread(target=test2, args=(1000000,))
    t2.start()
  
    time.sleep(3)  # # 等待上面两个线程执行完毕。。

    print("----在main中 g_num = %d " % g_num)
      
if __name__ == '__main__':
    main()

上程序中 g_num 的值理论应该为 2000000,但实际结果却是小于2000000,这就是资源竞争带来的问题


互斥锁

  • 解决上面资源竞争带来的问题,可以先让一个线程完成对全局变量的修改,在让另一个线程对局部变量的修改
  • threading模块中定义了LOCK类,可以方便的处理锁定
互斥锁的使用
# 创建锁
mutex = threading.Lock()

# 锁定
mutex.acquire()

# 释放
mutex.release()

注意:如果这个锁这前没有上锁,那么acquire不会堵堵塞,反之就会堵塞,直至该锁解锁为止

互斥锁解决问题
import threading
import time

# 定义一个全局变量
g_num = 0
# 创建互斥锁,默认没有上锁
mutex_lock = threading.Lock()

def test1(num):
    global g_num
    # 上锁,如果之前没有被上锁,那么就会上锁
    # 若之前已经被上锁,那么此时就会被堵塞在这,等待之前的锁解开
    mutex_lock.acquire()
    for i in range(num):
        g_num += 1
    # 解锁
    mutex_lock.release()
    print("----在test1中 g_num = %d " % g_num)

def test2(num):
    global g_num
    mutex_lock.acquire()
    for i in range(num):
        g_num += 1
    mutex_lock.release()
    print("----在test2中 g_num = %d " % g_num)

def main():
    t1 = threading.Thread(target=test1, args=(10000000,))
    t1.start()

    t2 = threading.Thread(target=test2, args=(10000000,))
    t2.start()

    # 等待上面两个线程执行完毕。。。
    time.sleep(3)

    print("----在main中 g_num = %d " % g_num)

if __name__ == '__main__':
    main()

互斥锁锁住的语句尽量的少一些,就上面的程序而言,可以不用把整个遍历放进去,只需把 g_num += 1 锁住就好

上锁解锁过程

当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。

每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。

线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值