多任务之线程
多任务,顾名思义就是多个任务同时进行,多任务又有并行和并发 ,并行是真正的多任务(即一个CPU执行一个任务),但现在电脑大部分是4核,并没有那么多的CPU去执行任务,这时就用到了并发(时间片轮转,任务轮流让CPU执行),由于切换速度很快,我们就会感觉多个任务在同时执行。
线程
threading
模块的使用
import threading
def test1():
pass
def test2():
pass
def main():
t1 = threading.Thread(traget=test1)
t2 = threading.Thread(traget=test2)
t1.start()
t2.start()
if __name__ == '__main__':
main()
注:调用
Thread
时,不会创建子线程,只是创建了一个对象,当这个对象调用star()
时,子线程才会被建立并启动。子线程线程在对象函数执行完毕后就会自动结束,而主线程必须在子线程完成后在结束,不然子线程会提前结束。
线程的数量
- 使用
threading
中的enumerate()
方法。
length = len(threading.enumerate())
print("当前运行线程数为:%d " % length)
用类封装线程代码
- 为了让每个线程的封装性更完美,所以使用
threading
模块时,往往会定义一个新的子类class,只要继承threading.Thread
就可以了,然后重写run
方法
import threading
class Test(threading.Thread):
def run(self): # 这里必须用run
print("这里运行代码。。。。。。")
self.login()
self.use()
def login(self):
print("这是登录的代码。。。。。")
def use(self):
print("这是使用的代码。。。。。")
if __name__ == '__main__':
t = Test()
t.start() # 调用start()方法时,会直接运行run()方法
注:若类里面有多个方法,调用
start()
时,不会主动运行,需在run()
方法内自身调用方法
多线程的执行顺序是不确定的
多线程共享全局变量
函数里修改全局变量
num = 100
nums = [100, 200]
def tset1():
global num
num += 100
def test2():
nums.append(300)
在一个函数中,对全局变量进行修改时,到底要不要用global,这就要看是否对全局变量标签指向进行了修改,若修改了指向,即全局变量标签指向了一个新的地方,那么久要用global进行声明,若只是修改了全局变量标签指向空间的数据时,就不必使用global进行声明
多线程里的共享全局变量
import threading
import time
g_num = 100 # 定义一个全局变量
def test1():
global g_num
g_num += 1
print("---在test1里 g_num = %d ---" % g_num)
def test2():
print("---在test2里 g_num = %d ---" % g_num)
def main():
t1 = threading.Thread(target=test1)
t2 = threading.Thread(target=test2)
t1.start()
time.sleep(1)
t2.start()
time.sleep(1)
print("---在main里 g_num = %d ---" % g_num)
print("---创建线程前的 g_num = %d " % g_num)
if __name__ == '__main__':
main()
在一个进程内的所有线程共享全局变量,很方便在多个线程间共享数据
共享全局变量的问题
- 多个线程可以共享一个变量,意味着它们可以随意修改该变量,若它们都在同一时间修改,这就造成了一个问题——资源竞争,从而导致全局变量的值混乱
import threading
import time
g_num = 0
def test1(num):
global g_num
for i in range(num):
g_num += 1
print("----在test1中 g_num = %d " % g_num)
def test2(num):
global g_num
for i in range(num):
g_num += 1
print("----在test2中 g_num = %d " % g_num)
def main():
t1 = threading.Thread(target=test1, args=(1000000,)) # 加逗号是因为传递的是列表
t1.start()
t2 = threading.Thread(target=test2, args=(1000000,))
t2.start()
time.sleep(3) # # 等待上面两个线程执行完毕。。
print("----在main中 g_num = %d " % g_num)
if __name__ == '__main__':
main()
上程序中
g_num
的值理论应该为 2000000,但实际结果却是小于2000000,这就是资源竞争带来的问题
互斥锁
- 解决上面资源竞争带来的问题,可以先让一个线程完成对全局变量的修改,在让另一个线程对局部变量的修改
threading
模块中定义了LOCK
类,可以方便的处理锁定
互斥锁的使用
# 创建锁
mutex = threading.Lock()
# 锁定
mutex.acquire()
# 释放
mutex.release()
注意:如果这个锁这前没有上锁,那么acquire不会堵堵塞,反之就会堵塞,直至该锁解锁为止
互斥锁解决问题
import threading
import time
# 定义一个全局变量
g_num = 0
# 创建互斥锁,默认没有上锁
mutex_lock = threading.Lock()
def test1(num):
global g_num
# 上锁,如果之前没有被上锁,那么就会上锁
# 若之前已经被上锁,那么此时就会被堵塞在这,等待之前的锁解开
mutex_lock.acquire()
for i in range(num):
g_num += 1
# 解锁
mutex_lock.release()
print("----在test1中 g_num = %d " % g_num)
def test2(num):
global g_num
mutex_lock.acquire()
for i in range(num):
g_num += 1
mutex_lock.release()
print("----在test2中 g_num = %d " % g_num)
def main():
t1 = threading.Thread(target=test1, args=(10000000,))
t1.start()
t2 = threading.Thread(target=test2, args=(10000000,))
t2.start()
# 等待上面两个线程执行完毕。。。
time.sleep(3)
print("----在main中 g_num = %d " % g_num)
if __name__ == '__main__':
main()
互斥锁锁住的语句尽量的少一些,就上面的程序而言,可以不用把整个遍历放进去,只需把
g_num += 1
锁住就好
上锁解锁过程
当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。
每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。
线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。