提到分布式系统,必然要提到分布式事务。要想理解分布式事务,不得不先介绍一下两阶段提交协议。先举个简单但不精准的例子来说明:
第一阶段,张老师作为“协调者”,给小强和小明(参与者、节点)发微信,组织他们俩明天8点在学校门口集合,一起去爬山,然后开始等待小强和小明答复。
第二阶段,如果小强和小明都回答没问题,那么大家如约而至。如果小强或者小明其中一人回答说“明天没空,不行”,那么张老师会立即通知小强和小明“爬山活动取消”。
细心的读者会发现,这个过程中可能有很多问题的。如果小强没看手机,那么张老师会一直等着答复,小明可能在家里把爬山装备都准备好了却一直等着张老师确认信息。更严重的是,如果到明天8点小强还没有答复,那么就算“超时”了,那小明到底去还是不去集合爬山呢?
XA方案也叫做两阶段提交协议
所谓的XA事务,两阶段提交
有一个事务管理器,负责协调多个数据库(资源管理器)的事务,事务管理器先问各个数据库你准备好了吗?
· 如果每个数据库都回复ok,那么就正式提交事务,在各个数据库上执行操作
· 任何一个数据库回答不ok,那么就回滚事务。
这种分布式事务方案,比较适合单块应用中,跨多个库的分布式事务,而且因为严重依赖于数据库层面来搞定复杂的事务,效率很低,绝对不适合高并发场景
TCC方案
全称:Try、Confirm、Cancel
4.1 三个阶段
4.1.1 Try
对各个服务的资源做检测,对资源进行锁定或者预留
4.1.2 Confirm
在各个服务中执行实际的操作
4.1.3 Cancel
如果任何一个服务的业务方法执行出错,那么这里就需要进行补偿,即执行已操作成功的业务逻辑的回滚操作
4.2 跨银行转账案例
涉及到两个银行的分布式事务,如果用TCC方案来实现,思路是这样的:
· Try阶段先把两个银行账户中的资金给它冻结住,不让操作了
· Confirm阶段执行实际的转账操作,A银行账户的资金扣减,B银行账户的资金增加
· Cancel阶段如果任何一个银行的操作执行失败,那么就需要回滚进行补偿
比如A银行账户如果已经扣减了,但是B银行账户资金增加失败了,那么就得把A银行账户资金给加回去
该方案说实话几乎很少使用,但也有使用场景.
因为这个事务的回滚实际上严重依赖于你自己写代码来回滚和补偿了,会造成补偿代码巨大,非常恶心!
本地消息表
ebay搞出来的这么一套思想
5.1 简介
· A系统在本地一个事务里操作的同时,插入一条数据到消息表
· 接着A系统将这个消息发送到MQ
· B系统接收到消息后,在一个事务里,往自己本地消息表里插入一条数据,同时执行其他的业务操作,如果这个消息已经被处理过了,那么此时这个事务会回滚,这样保证不会重复处理消息
· B系统执行成功后,就会更新自己本地消息表的状态以及A系统消息表的状态
· 如果B系统处理失败,那么就不会更新消息表状态,那么此时A系统会定时扫描自己的消息表,如果有未处理的消息,会再次发送到MQ中去,让B再处理
5.2 优点
这个方案保证了最终一致性
哪怕B事务失败了,但是A会不断重发消息,直到B那边成功为止
5.3 缺陷
关系型数据库的吞吐量和性能方面存在瓶颈,频繁的读写消息会给数据库造成压力。所以,在真正的高并发场景下,该方案也会有瓶颈和限制的。
可靠消息最终一致性方案
干脆不用本地的消息表了,直接基于MQ来实现事务。比如阿里的RocketMQ就支持消息事务!
6.1 简介
· A系统先发送一个prepared消息到MQ,如果这个prepared消息发送失败,那么就直接取消操作,不执行了
· 如果这个消息发送成功过了,那么接着执行本地事务,如果成功就告诉MQ发送确认消息,如果失败就告诉MQ回滚消息
· 如果发送了确认消息,那么此时B系统会接收到确认消息,然后执行本地的事务
· MQ会自动定时轮询所有prepared消息回调你的接口,问你这个消息是不是本地事务处理失败了,所有没发送确认的消息,是继续重试还是回滚?这里你就可以查下数据库看之前本地事务是否执行,如果回滚了,那么这里也回滚吧。这个就是避免可能本地事务执行成功了,别确认消息发送失败了。
· 如果系统B的事务失败了咋办?重试咯,自动不断重试直到成功,如果实在是不行,要么就是针对重要的资金类业务进行回滚,比如B系统本地回滚后,想办法通知系统A也回滚;或者是发送报警由人工来手工回滚和补偿
这个还是比较合适的,目前国内互联网公司大都是这么玩的,要不你举用RocketMQ支持的,要不你就自己基于类似ActiveMQ?RabbitMQ?自己封装一套类似的逻辑出来,总之思路就是这样子的