ComfyUI-controlnet控制出图

插件

comfyui_controlnet_aux

提供加载预处理器节点

https://github.com/Fannovel16/comfyui_controlnet_aux

预处理器

预处理器说明,官方文档

https://github.com/Fannovel16/comfyui_controlnet_aux?tab=readme-ov-file

  1. dwpose 检测全身

body_pose_model.pth、facenet.pth、hand_pose_model.pth(检测身体部位)放在以下目录

E:\Comfyui\ComfyUI\custom_nodes\comfyui_controlnet_aux\ckpts\lllyasviel\Annotators\

yolox_l.onnx(生成脸部遮罩)放在以下目录

E:\Comfyui\ComfyUI\custom_nodes\comfyui_controlnet_aux\ckpts\yzd-v\DWPose\

dw-ll_ucoco_384_bs5.torchscript.pt(姿势预估器)放在以下目录

E:\Comfyui\ComfyUI\custom_nodes\comfyui_controlnet_aux\ckpts\hr16\DWPose-TorchScript-BatchSize5\
  1. depth anything v2

depth_anything_v2_vitl.pth(检测物品的空间位置)放在以下目录

E:\Comfyui\ComfyUI\custom_nodes\comfyui_controlnet_aux\ckpts\depth-anything\Depth-Anything-V2-Large\

controlnet模型

文档说明(controlnet模型的作用)

https://github.com/lllyasviel/ControlNet

  1. dwpose 检测全身

需要加载control_v11p_sd15_openpose.pth

  1. depth anything v2

需要加载control_v11f1p_sd15_depth.pth

  1. canny

需要加载control_v11p_sd15_canny.pth

全部controlnet模型统一放在以下目录,v11版本每个pth文件需要配一个同名yaml文件

E:\Comfyui\ComfyUI\models\controlnet

官方提供的模型跟预处理器之间的关系

模型名用途预处理器备注
白底黑线反色invert
面部控制mediapipi_face
参考来源图片refrence_only仅参考输入图
refrence_adain输入图 + 自适应范例
refrence_adain+attn输入图 + 自适应范例 + attention
1.control_v11p_sd15_canny边缘检测canny将图片轮廓描绘得好
2.control_v11f1p_sd15_depth深度检测depth_leres对空间描述把握得好
depth_midas
depth_zoe
3.control_v11p_sd15s2_lineart_anime动漫线稿控制lineart_anime
lineart_anime_denoise带去噪
4.control_v11p_sd15_lineart线稿控制lineart_coarse粗略线提取
lineart_realistic写实线提取
lineart_standard标准
5.control_v11p_sd15_mlsd直线检测mlsd直线检查,适用于建筑,室内装修图
6.control_v11p_sd15_normalbae法线贴图normal_bae
normal_midas
7.control_v11p_sd15_openpose姿态控制openPose仅姿态
openpose_face姿态 + 脸部
openpose_faceonly仅脸部
openpose_full姿态、手部及脸部
openpose_hand姿态 + 手部
8.control_v11p_sd15_scribble涂鸦scribble_hed合成
scribble_pidinet手绘
scribble_xdog强化边缘
9.control_v11p_sd15_seg语义分割seg_ofade20k
seg_ofcoco
seg_ufade20k
10.control_v11e_sd15_shuffle风格洗牌转移shuffle
11.control_v11p_sd15_softedge软边缘softedge_hed
softedge_hedsafe
softedge_pidinet
softedge_pidisafe
12.control_v11e_sd15_ip2p图生图预处理器选 None
13.control_v11f1e_sd15_tile分块采样
14.control_v11p_sd15_inpaintcontrolnet 自带的局部重绘inpaint_global_harmonious

工作流和网盘资源

我用夸克网盘分享了「ComfyUI教程」,点击链接即可保存。打开「夸克APP」,无需下载在线播放视频,畅享原画5倍速,支持电视投屏。
链接:https://pan.quark.cn/s/274b451a3072

视频讲解

b站视频

https://www.bilibili.com/video/BV1QH2AYEEF9/?spm_id_from=333.1007.0.0

### ComfyUIControlNet 的常见用法及配置 #### 控制网络组件解析 ControlNet 主要由三个核心节点构成:ControlNet 加载器、ControlNet 应用以及参考片输入[^1]。这些组件协同工作,使得用户能够通过不同的方式引导像生成过程。 #### 节点安装指南 为了使用 ControlNet 插件,在 ComfyUI 管理界面内可通过搜索 `ControlNet aux` 来查找并完成相应节点的下载与安装操作[^3]。一旦安装完毕,则需重启软件使更改生效。 #### 功能特性概述 借助于多种预设模式的支持,ControlNet 可实现超过十种类型的视觉效果调控,涵盖了从构布局到角色姿态调整等多个方面[^4]。具体而言: - **结构指导**:帮助维持或改变整体画面架构; - **姿态指引**:允许指定人物或其他主体的姿态特征; - **风格转换**:支持不同美术流派间的平滑过渡; - **细节增强**:可用于提升特定区域内的精细度表现力; #### 实际应用场景举例 利用上述功能模块,艺术家们得以探索更为丰富的创意表达形式,例如但不限于艺术化处理二维码案、创造具有独特质感的文字特效、为黑白影像注入色彩活力、实施经典作品重绘或是开发原创 IP 形象设计等项目实践当中。 ```python # Python伪代码示例展示如何设置ControlNet参数 control_net_loader = load_controlnet_model('path_to_model') # 加载模型文件路径 reference_image = read_image_file('example_reference.jpg') # 导入参照物像 apply_controlnet(control_net_loader, reference_image) # 将ControlNet应用于当前会话中 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值