PTA——统计某类完全平方数

该文描述了一个编程问题,要求实现一个函数IsTheNumber,检查给定整数N是否为完全平方数并且至少有两位数字相同。解决方案包括使用sqrt函数判断完全平方数,以及通过哈希表记录数字出现次数来检查重复数字。提供的代码示例展示了如何结合这两个条件进行判断。
摘要由CSDN通过智能技术生成

本题要求实现一个函数,判断任一给定整数N是否满足条件:它是完全平方数,又至少有两位数字相同,如144、676等。

函数接口定义:

int IsTheNumber ( const int N );

其中N是用户传入的参数。如果N满足条件,则该函数必须返回1,否则返回0。

裁判测试程序样例:

#include <stdio.h>
#include <math.h>

int IsTheNumber ( const int N );

int main()
{
    int n1, n2, i, cnt;
    
    scanf("%d %d", &n1, &n2);
    cnt = 0;
    for ( i=n1; i<=n2; i++ ) {
        if ( IsTheNumber(i) )
            cnt++;
    }
    printf("cnt = %d\n", cnt);

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

105 500

输出样例:

cnt = 6

代码长度限制 16 KB

时间限制 400 ms

内存限制 64 MB

🤔思路:

本题所写函数要满足的两个条件:

  • 是完全平方数

  • 有两位数字相同

完全平方数判断:一个数完全平方数满足这个数是一个正整数,而且一个正整数的平方等于这个数,所以切入点就是要判断的正整数不存在一个正整数的平方等于它本身则概该数不是完全平方数。我们知道函数sqrt(n)返回根号n,若n不能完全平方则sqrt(n)返回的值是一个小数,所以对sqrt(n)强制转换为int型之后,(int)(sqrt(n))<sqrt(n),所以只要(int)(sqrt(n))*(int)(sqrt(n))!=N 则该数就不是完全平方数

至少有两位数字相同判断:我们第一想法往往就是将目标进行拆解,统计各个数的出现次数,但相对蛮烦。这里提供一个比较快速方便的解法,这种方法类似于之前学过过的哈希表。我们知道组成一个数的元素是0 ~ 9这十个数字,所以我们定义一个空间大小为10的数组a[10],并将数组元素a[0]~a[10]初值都设置为0,依次遍历目标数各个位上的数字,将 a[目标数] 置1,若再次遍历到相同的数字时,此时 a[目标数] 在上次就已经置为1了,所以在这就可以给出有两个数相同的结论。

完整代码如下:

int IsTheNumber ( const int N )
{
    int a[10] = {0};
    int d;
    int n = N;
    if((int)(sqrt(n))*(int)(sqrt(n))==N){
        while(1){
            d = n%10;
            if(a[d])
                return 1;
            a[d] = 1;
            n /= 10;
            if(n == 0) return 0;
        }
    }
    else{
        return 0;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sunqk5665

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值