deeplabv3+训练camvid和cityscapes数据集(一)

本文介绍了作者在矩池云上使用tensorflow进行deeplabv3+模型训练的经验。分享了cityscapes和camvid数据集的下载链接以及deeplab代码的获取,特别强调了前期数据准备的重要性,并提供了旧版tensorflow代码的权重下载。
摘要由CSDN通过智能技术生成

前言

由于自己电脑配置原因,自己主要在矩池云(好像在打广告,小伙伴有好的云端可以推荐一下)租用服务器进行训练,在window系统进行数据处理。现在就和小伙伴们分享一下最近的学习经验在这里插入图片描述

敲重点!!!

前期的数据准备非常重要,选择适合自己的训练版本很重要,毕竟自己走了很多的弯路

前期准备

1、下载数据集(可以从citycapes官网下载数据集,但是有点麻烦)

cityscapes网盘链接:https://pan.baidu.com/s/1uQUqZYYaXT-CpgfPCaVSJQ
提取码:oajs
camvid网盘链接:https://pan.baidu.com/s/1TrlAMiYX1JfKAt1OEbhBOg
提取码:tdib

cityscapes没有进行tfrecord数据转换,camvid完成了数据转换下面不在介绍
为了在PyTorch中对DeepLabV3模型进行训练,需要按照以下详细步骤: 1. 准备Cityscapes数据集:首先下载Cityscapes数据集,并解压缩到指定目录。Cityscapes数据集包括了大量城市场景的图像和对应的标注数据。 2. 数据预处理:对Cityscapes数据集进行预处理,包括图像大小调整、数据增强和标签映射等操作,以便与DeepLabV3模型进行训练和评估。 3. 构建DeepLabV3模型:在PyTorch环境中构建DeepLabV3模型,可以选择使用预训练模型进行迁移学习,也可以从头开始训练。 4. 定义损失函数和优化器:为模型定义损失函数和优化器,常用的损失函数包括交叉熵损失函数等,优化器可以选择Adam、SGD等。 5. 进行训练:将预处理后的Cityscapes数据集输入到DeepLabV3模型中进行训练,根据损失函数和优化器进行参数更新,直到模型收敛或达到指定的训练轮数。 6. 模型评估:使用训练好的DeepLabV3模型对Cityscapes数据集进行评估,计算模型在测试集上的准确率、召回率等指标。 7. 模型优化:根据评估结果对模型进行优化,可以调整模型结构、超参数,或者尝试不同的训练策略等方法。 通过以上步骤,可以在PyTorch环境中成功移植并训练DeepLabV3模型,基于Cityscapes数据集实现语义分割任务。这个过程需要一定的PyTorch基础和对深度学习模型训练的理解,但是通过不断尝试和调整,可以得到更好的训练效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值