Kill the Tree(树的重心)

Kill the Tree

题意

求一棵有根树中,以每个节点为根的子树的所有重心

思路

根据性质:

  • 把两棵树通过一条边相连,新的树的重心在原来两棵树重心的连线上。
  • 一棵树最多有两个重心,且相邻。
  • 重心一定在以重儿子为根的子树的重心到该点的路径上。

我们在以重儿子为根的子树的重心到该点的路径上找答案即可。在从重儿子的重心向上爬的过程中,什么样的点是更优的呢?我们可以考虑向上走的那条边对总距离的贡献,减少的量是除了重儿子重心的子树外其他的点的数量,增加的量是重儿子重心的子树中节点的数量。也就是 s z [ r t ] − s z [ u ] > s z [ u ] sz[rt] - sz[u] > sz[u] sz[rt]sz[u]>sz[u]时,向上爬更优。

代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>

using namespace std;

const int N = 200010;

int n;
int h[N], e[2 * N], ne[2 * N], idx;
int sz[N], fa[N], son[N], deep[N];
int dp[N];
vector<int> ans[N];

void add(int a,int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}

void dfs1(int x)
{
    sz[x] = 1;
    for(int i = h[x]; ~i; i = ne[i]) {
        int j = e[i];
        if(j == fa[x]) continue;
        fa[j] = x;
        deep[j] = deep[x] + 1;
        dfs1(j);
        sz[x] += sz[j];
        if(sz[j] > sz[son[x]]) son[x] = j;
    }
}
void dfs2(int x)
{
    for(int i = h[x]; ~i; i = ne[i]) {
        int j = e[i];
        if(j == fa[x]) continue;
        dfs2(j);
    }
    dp[x] = x;
    if(!son[x]) return;
    int t = dp[son[x]];
    while(deep[t] > deep[x] && sz[x] - sz[t] > sz[t]) t = fa[t];
    dp[x] = t;
}

int main()
{
    scanf("%d", &n);
    memset(h, -1, sizeof(h));
    for(int i = 1; i <= n - 1; i ++) {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);
    }
    dfs1(1);
    dfs2(1);
    for(int i = 1; i <= n; i ++) {
        int x = dp[i];
        ans[i].push_back(x);
        int t = fa[x];
        if(t && sz[i] - sz[x] == sz[x]) ans[i].push_back(t);
        sort(ans[i].begin(), ans[i].end());
        if(ans[i].size() == 1) printf("%d\n", ans[i][0]);
        else printf("%d %d\n", ans[i][0], ans[i][1]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值