第一个完整的使用Hugging Face Transformers对预训练模型进行微调的demo is coming!
整体步骤为:
加载数据集load dataset
from datasets import load_dataset
raw_datasets = load_dataset("glue", "mrpc")
对数据集做分词tokenize
from transformers import AutoModelForSequenceClassification
checkpoint = 'distilbert-base-uncased-finetuned-sst-2-english'
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
def tokenize_function(examples):
return tokenizer(examples["sentence1"], examples["sentence2"],truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
组装DataCollator
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(tokenizer, padding=True)
构建模型model
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
定义模型参数TrainingArgs
from transformers import TrainingArguments
training_args = TrainingArguments('test-trainer')
创建训练对象Trainer
from transformers import Trainer
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets['train'],
eval_dataset=tokenized_datasets['validation'],
data_collator=data_collator,
tokenizer=tokenizer,
)
训练 --- 一键开启,简便至极
trainer.train()
预测
predictions = trainer.predict(tokenized_datasets['test'])
print(predictions.predictions.shape, predictions.label_ids.shape)
import numpy as np
preds = np.argmax(predictions.predictions, axis=-1)
评估 --- 最新版本的评估模块,对得起标题2025
import evaluate
accuracy = evaluate.load('accuracy')
print(accuracy.compute(references=predictions.label_ids, predictions=preds))
clf_metrics = evaluate.combine(["accuracy", "f1", "precision", "recall"])
all_res = clf_metrics.compute(predictions=preds, references=predictions.label_ids)
print(all_res)
上完整代码
# 使用load dataset方法获取公开数据集。这里使用的是GLUE下的MRPC数据集,包含两短文本,和这两个文本的关系是否相关(标签数量为2)
from datasets import load_dataset
raw_datasets = load_dataset("glue", "mrpc")
# 获取分词器tokenizer
from transformers import AutoModelForSequenceClassification
checkpoint = 'distilbert-base-uncased-finetuned-sst-2-english'
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# 对数据集进行处理时,Hugging Face官方推荐使用map函数,如果不习惯也可以采用pandas的处理方式
# 此时需要预先定一个转换函数给map使用
def tokenize_function(examples):
return tokenizer(examples["sentence1"], examples["sentence2"],truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# DataCollator其实就是PyTorch里的Dataloader,按批次组装数据集,然后输入给模型
from transformers import DataCollatorWithPadding # regard it as dataloader in pytorch
data_collator = DataCollatorWithPadding(tokenizer, padding=True)
# 获取到预训练模型后,这里指定输出类别为2,相当于自定义给该预训练模型上加了一个输出头,做分类输出
# 这段代码运行后会看到提示,这个输出头部分的权重无法直接从预训练模型中加载,需要后面我们自己来进行训练
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
# 构建训练参数,参数非常多,这里选择一个简单的通用式
from transformers import TrainingArguments
training_args = TrainingArguments('test-trainer')
# 构建训练对象
from transformers import Trainer
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets['train'],
eval_dataset=tokenized_datasets['validation'],
data_collator=data_collator,
tokenizer=tokenizer,
)
# 开始训练
trainer.train()
# 预测
predictions = trainer.predict(tokenized_datasets['test'])
print(predictions.predictions.shape, predictions.label_ids.shape)
# (1725, 2) (1725,)
import numpy as np
# 解析预测结果
preds = np.argmax(predictions.predictions, axis=-1)
# 评估一下
import evaluate
accuracy = evaluate.load('accuracy')
print(accuracy.compute(references=predictions.label_ids, predictions=preds))
clf_metrics = evaluate.combine(["accuracy", "f1", "precision", "recall"])
all_res = clf_metrics.compute(predictions=preds, references=predictions.label_ids)
print(all_res)