项目场景:
收到了字节跳动计算机视觉算法实习生-抖音职位的面试。
面试问题:
1.首先HR让自我介绍;
2.然后让介绍自己做过的项目;
答:我做过细胞检测还有口罩检测还有一个导师的国项,这里不方便说明。
3.根据自己描述做过的项目,HR问一些项目细节,我做的项目是目标检测和缺损检测之类的。
问:YOLO和Faste-rcnn之间的区别,并且问两种算法的工作原理,
答:YOLO是one-stage检测算法,能够同时预测边框和预测类别。而Faster-rcnn是two-stage检测算法,它是分开进行着两个预测步骤。YOLO的优点是检测速度快,但是对小目标的检测效果不明显。而Faster-rcnn的检测效果比较好但是其训练和检测的时间成本过于昂贵。
问:两种目标的检测精度和训练检测速度之间的对比,并且让解释两种算法为什么同样的模型深度会产生不同的效果。
答:对于大的检测目标来说,二者的检测效果相差无几,但是对于小目标的检测来说YOLO的检测效果远远小于Faster-rcnn,YOLO比较坑的地方在于倒数第二层为全连