基于Java的并查集

需求描述

假设有n个村庄,有些村庄之间有连接的路,有些村庄之间并没有连接的路

设计一个数据结构,能够快速执行2个操作:

  1. 查询2个村庄之间是否有连接的路
  2. 连接2个村庄 

使用数组、链表、平衡二叉树、集合(Set),查询、连接的时间复杂度都是: O(n)

并查集能够办到查询、连接的均摊时间复杂度都是 O(α(n)), α(n) < 5
并查集非常适合解决这类“连接”相关的问题

基础概念

并查集也叫作不相交集合(Disjoint Set)

并查集有2个核心操作
查找(Find): 查找元素所在的集合(这里的集合并不是特指Set这种数据结构, 是指广义的数据集合)
合并(Union): 将两个元素所在的集合合并为一个集合

有2种常见的实现思路
 Quick Find
    查找(Find)的时间复杂度: O(1)
    合并(Union)的时间复杂度: O(n)
Quick Union
    查找(Find)的时间复杂度: O(logn),可以优化至 O(α(n)), α(n) < 5
   合并(Union)的时间复杂度: O(logn),可以优化至 O(α(n)), α(n) < 5

假设并查集处理的数据都是整型,那么可以用整型数组来存储数据:

不难看出: 
     0、1、3 属于同一集合
     2 单独属于一个集合
     4、5、6、7 属于同一集合

因此,并查集是可以用数组实现的树形结构 (二叉堆、优先级队列也是可以用数组实现的树形结构)

接口定义

package com.lic.UnionFind;
 
public abstract class UnionFind {
    protected int[] parents;
 
    public UnionFind(int capacity) {
        if(capacity < 0){
            throw new IllegalArgumentException("Capacity must be >=1");
        }
        parents = new int[capacity];
        //parents初始化,每个元素的父元素默认为自己
        for (int i = 0; i < parents.length ; i++) {
            parents[i] = i;
        }
    }
 
    /**
     * 查找v所属的集合(根节点)
     * @param v
     * @return
     */
    public abstract int find(int v);
 
    /**
     * 合并v1、v2所在的集合
     */
    public abstract void union(int v1, int v2);
 
    /**
     * 检查v1、v2是否属于同一个集合
     */
    public boolean isSame(int v1, int v2) {
        return find(v1) == find(v2);
    }
 
    /**
     * 索引范围检查
     * @param v
     */
    protected void rangeCheck(int v){
        if (v < 0 || v >= parents.length) {
            throw new IllegalArgumentException("v is out of bounds");
        }
    }
}

注意: 初始化时,每个元素各自属于一个单元素集合

Quick  Find

Quick  Find Union

Quick Find 的 union(v1, v2):让 v1 所在集合的所有元素都指向 v2 的根节点

代码实现:

/**
 * 将v1所在集合的所有元素,都嫁接到v2的父节点上
 */
@Override
public void union(int v1, int v2) {
    int p1 = find(v1);
    int p2 = find(v2);
    if(p1 == p2) return ;
    /**
     * 遍历parent数组, 所有父元素与v1相同的元素都需要修改为v2的父元素
     */
    for (int i = 0; i < parents.length; i++) {
        if(parents[i] == p1){
            parents[i] = p2;
        }
    }
}

时间复杂度: O(n)

Quick  Find Find

代码实现:

/**
 * 父元素就是根节点
 */
@Override
public int find(int v) {
    rangeCheck(v);
    return parents[v];
}

find(0) == 2
find(1) == 2
find(3) == 4
find(2) == 2
时间复杂度:O(1)

Quick  Union

Quick  Union Union

Quick Union 的 union(v1, v2):让 v1 的根节点指向 v2 的根节点

代码实现:

/**
 * 将v1所在的集合嫁接到v2的根节点上
 */
@Override
public void union(int v1, int v2) {
    int p1 = find(v1);
    int p2 = find(v2);
    if(p1 == p2) return ;
    parents[p1] = p2;
}

时间复杂度:O(logn)

Quick  Union Find

/**
 * 通过parent链条不断地向上找,直到找到根节点
 */
@Override
public int find(int v) {
    rangeCheck(v);
    while(v != parents[v]){
        v = parents[v];
    }
    return parents[v];
}

find(0) == 2
find(1) == 2
find(3) == 2
find(2) == 2
时间复杂度: O(logn)

Quick  Union 优化

在Union的过程中,可能会出现树不平衡的情况,甚至退化成链表

有2种常见的优化方案: 
    基于size的优化:元素少的树 嫁接到 元素多的树
    基于rank的优化:矮的树 嫁接到 高的树

Quick  Union 基于size的优化

package com.lic.UnionFind;
 
/**
 * Quick Union 基于size的优化
 */
public class UnionFind_QU_S extends UnionFind_QU{
    private int[] sizes;
 
    public UnionFind_QU_S(int capacity) {
        super(capacity);
        sizes = new int[capacity];
        for (int i = 0; i < sizes.length; i++) {
            sizes[i] = 1;  //初始化每棵树的节点数量都为1
        }
    }
 
    /**
     * 矮的树嫁接到高的树上
     */
    @Override
    public void union(int v1, int v2) {
        int p1 = find(v1);
        int p2 = find(v2);
        if(p1 == p2) return ;
        /**
         * 判断哪个元素所在的集合树的节点数量比较少, 那么就将该树嫁接到节点数量较多的树上
         */
        if(sizes[p1] > sizes[p2]){
            parents[p2] = p1;
            sizes[p1] = sizes[p1] + sizes[p2];
        }else{
            parents[p1] = p2;
            sizes[p2] = sizes[p2] + sizes[p1];
        }
    }
}

基于size的优化,也可能会存在树不平衡的问题

Quick  Union 基于rank的优化

package com.lic.UnionFind;
 
/**
 * Quick Union 基于rank的优化
 */
public class UnionFind_QU_R extends UnionFind_QU{
    private int[] ranks;
 
    public UnionFind_QU_R(int capacity) {
        super(capacity);
        ranks = new int[capacity];
        for (int i = 0; i < ranks.length; i++) {
            ranks[i] = 1;  //初始化每棵树的高度都为1
        }
    }
 
 
    /**
     * 矮的树嫁接到高的树上
     */
    @Override
    public void union(int v1, int v2) {
        int p1 = find(v1);
        int p2 = find(v2);
        if(p1 == p2) return ;
        /**
         * 判断哪个元素所在的集合树比较矮, 那么就将该树嫁接到较高的树上
         * 如果两个树高度不同, 那么嫁接后, 两个树的高度都未发生改变
         * 如果两个树的高度一致, 那么嫁接后, 矮的树高度不变, 高的树高度加 1
         */
        if(ranks[p1] > ranks[p2]){
            parents[p2] = p1;
        }else if(ranks[p2] > ranks[p1]) {
            parents[p1] = p2;
        }else{
            parents[p1] = p2;
            ranks[p2] ++;
        }
    }
}

路径压缩(Path Compression)

虽然有了基于rank的优化,树会相对平衡一点, 但是随着Union次数的增多,树的高度依然会越来越高, 导致find操作变慢,尤其是底层节点(因为find是不断向上找到根节点)

路径压缩: 在find时使路径上的所有节点都指向根节点,从而降低树的高度

/**
 * 在find过程, 将find路劲上的所有元素都指向根节点, 达到压缩路径的作用
 */
@Override
public int find(int v) {
    rangeCheck(v);
    if(v != parents[v]){
        parents[v] = find(parents[v]); //获取到该元素的根节点,使该元素指向此根元素, 并返回该根元素
    }
    return parents[v];
}

路径压缩使路径上的所有节点都指向根节点,所以实现成本稍高,还有2种更优的做法,不但能降低树高,实现成本也比路径压缩低:路径分裂(Path Spliting), 路径减半(Path Halving); 路径分裂、路径减半的效率差不多,但都比路径压缩要好

路径分裂 (Path Spliting)

路径分裂:使路径上的每个节点都指向其祖父节点(parent的parent)

/**
 * 在find过程, 使路径上的每个节点都指向其祖父节点
 */
@Override
public int find(int v) {
    rangeCheck(v);
    while(v != parents[v]){
        int p = parents[v];
        parents[v] = parents[parents[v]];
        v = parents[v];
    }
    return v;
}

路径减半(Path Halving)

路径减半:使路径上每隔一个节点就指向其祖父节点(parent的parent)

/**
 * 在find过程, 使路径上每隔一个节点就指向其祖父节点
 */
@Override
public int find(int v) {
    rangeCheck(v);
    while(v != parents[v]){
        parents[v] = parents[parents[v]];
        v = parents[v];
    }
    return v;
}
public class GenericUnionFind<V> {
    private Map<V, Node<V>> nodes = new HashMap<>();
 
    public void makeSet(V v) {
        if (nodes.containsKey(v)) return;
        nodes.put(v, new Node<>(v));
    }
    
    /**
     * 找出v的根节点
     */
    private Node<V> findNode(V v) {
        Node<V> node = nodes.get(v);
        if (node == null) return null;
        while (!Objects.equals(node.value, node.parent.value)) {
            node.parent = node.parent.parent;
            node = node.parent;
        }
        return node;
    }
    
    public V find(V v) {
        Node<V> node = findNode(v);
        return node == null ? null : node.value;
    }
    
    public void union(V v1, V v2) {
        Node<V> p1 = findNode(v1);
        Node<V> p2 = findNode(v2);
        if (p1 == null || p2 == null) return;
        if (Objects.equals(p1.value, p2.value)) return;
        
        if (p1.rank < p2.rank) {
            p1.parent = p2;
        } else if (p1.rank > p2.rank) {
            p2.parent = p1;
        } else {
            p1.parent = p2;
            p2.rank += 1;
        }
    }
    
    public boolean isSame(V v1, V v2) {
        return Objects.equals(find(v1), find(v2));
    }
    
    private static class Node<V> {
        V value;
        Node<V> parent = this;
        int rank = 1;
        Node(V value) {
            this.value = value;
        }
    }
}

性能测试

在20w随机数的数据规模下对以上7中并查集实现方式进行测试find和union方法, 测试结果如下:

【UnionFind_QF】
开始:20:28:55.041
结束:20:29:17.693
耗时:22.652秒


【UnionFind_QU】
开始:20:29:17.693
结束:20:30:26.599
耗时:68.906秒


【UnionFind_QU_R】
开始:20:30:26.602
结束:20:30:26.643
耗时:0.041秒


【UnionFind_QU_S】
开始:20:30:26.645
结束:20:30:26.685
耗时:0.04秒


【UnionFind_QU_R_PC】
开始:20:30:26.687
结束:20:30:26.721
耗时:0.034秒


【UnionFind_QU_R_PS】
开始:20:30:26.722
结束:20:30:26.755
耗时:0.033秒


【UnionFind_QU_R_PH】
开始:20:30:26.756
结束:20:30:26.787
耗时:0.031秒


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值