pytorch 动态图机制

文章展示了动态图的概念,通过PyTorch库创建了一个简单的神经网络层,利用动态图进行张量运算和梯度回传。动态图提供了灵活性,便于调试和调整模型参数。
摘要由CSDN通过智能技术生成

动态图的含义是什么?

运算与搭建同时进行


动态图有什么好处?

灵活,易调节


动态图示例

在这里插入图片描述

torch.manual_seed(10)
W_h = torch.randn(size=(20,20),requires_grad=True)
W_x = torch.randn(size=(20,10),requires_grad=True)

x = torch.randn(size=(1,10))
prev_h = torch.randn(size=(1,20))

# print(prev_h.t().shape) t()的作用是转置
h2h = torch.mm(W_h,prev_h.t())
i2h = torch.mm(W_x,x.t())
next_h = h2h + i2h
next_h = next_h.tanh()

loss = next_h.sum()
print(loss)
loss.backward()
print(W_h.grad,W_x.grad)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值