1.文献(索引)
数据的信息化,信息的知识化。
1. 面向多源地理空间数据的知识图谱构建_刘俊楠(2020.07)
以地理空间数据提取地理实体为主百度百科补充属性信息为辅构建知识图谱,自上而下构建本体[模式层]、自下而上完善本体[数据层]。从模式层【通过封装扩充GeoSparql的geo和sf本体实现】、数据层(知识获取+知识融合)、知识存储【关系数据库(地理空间数据)+图数据库(语义关系和空间关系)】三方面介绍了实现的关键技术。最后以【四维图新导航中的空间数据+互联网数据】为数据源构建知识图谱,并从实体和关系两方面进行了评估。
2.自然灾害应急知识图谱构建方法研究_杜志强(2020.09)
围绕灾害事件、应急任务、灾害数据、模型方法4个要素建立本体的概念层次、属性以及语义关系,自顶向下完成模式层的构建。以国家减灾网、中文学术文献检索平台、洪涝灾害评估模型库作为多源数据,进行实体抽取和模型方法抽取,并进行知识融合,然后用图数据库进行存储,自底向上完成数据层的构建。从而完成了知识图谱的构建。以【洪涝灾害应急】知识图谱为例,说明该知识图谱的可行性。
3.面向一体化综合减灾的知识图谱构建方法_陶坤旺(2020.08)
总结了一体化综合减灾的知识图谱构建流程【对多源异构数据进行处理->从数据中抽取实体和关系->知识融合->知识存储】和关键技术【知识抽取[专家法]->信息融合->知识建模(自顶向下手工建模)->知识存储(表数据库+图数据库[RDF])】,以【九寨沟地震】为例,通过分析地震场景抽取实体和关系,建立本体模型,然后将数据经过知识抽取和融合,构建知识图谱并实现对不同用户的智能推送。
4.多源异构数据的大规模地理知识图谱构建_蒋秉川(2018.08)***【论述类文章】***
本文系统评述了知识图谱、地理知识图谱的研究现状[与地学信息图谱的本质区别],提出了地理知识图谱的构建流程)(自顶向下),重点研究了地理知识图谱构建的关键技术【地理知识抽取、地理知识融合、地理知识推理、地理知识的动态感知和更新】,讨论和阐述了地理知识图谱的应用方向(面向人的应用和面向智能平台的应用)。
5.论地理知识图谱_陆锋(2017.06)***【论述类文章】***
本文阐述了语义网和知识图谱的关系,针对网络文本隐藏的的地理空间数据,对地理知识图谱研究进展进行阐述,包括开放语义网络、开放实体抽取(t通用方法+空间位置)、开放实体关系抽取(基于Bootstrapping技术)、地理语义网对齐(尚未出现完整的地理知识库融合系统)、地理知识图谱存储(基于RDF的模型关系数据库和图数据库)。最后对地理知识图谱的核心问题进行论述[地理空间的信息量与质量评价、地理信息语义理解、地理空间语义计算模型、异构语义网络对齐]。
2.Java知识(索引)
1.面向对象基础:API的使用、类、对象、成员变量、局部变量
2.封装:private、this、构造方法(有参、无参)
3.字符串:String、StringBuilder【各有哪些方法和如何让转换】
4.集合:ArrayList【各种方法的使用】
5.继承:super、【继承中成员变量、构造方法、成员方法的访问特点】、方法重写@Override
6.修饰符:包、导包、权限修饰符[private、默认、protected、public]、状态修饰符[final、static]
7.多态:【多态中成员变量、成员方法的访问特点】、多态的转型[向上转型、向下转型]
8.抽象类:特点、成员特点[成员变量、构造方法、成员方法]
9.接口:特点、成员特点[成员变量、构造方法、成员方法]、抽象类和接口的区别[成员、关系、设计理念]
10.综合案例:学生管理系统、乒乓球篮球教练及运动员事件
11.