t-SNE 原理分析

t-SNE是一种降维方法,旨在保持高维数据中的相似性结构。它通过将高维数据转换为低维空间中的条件概率分布来解决拥挤问题。t-SNE使用t分布而非SNE的高斯分布,优化过程中考虑了对称性,并且在手写数字等数据集上表现出良好效果。
摘要由CSDN通过智能技术生成

SNE

原理分析

核心:将欧几里得距离转换为条件概率来表达点与点之间的相似度。

假设我们n个高维有数据 x 1 , x 2 . . . x n x_1,x_2...x_n x1,x2...xn,我们需要将其降至低维,需要保证的是讲相似的点尽量聚在一起,不相似的点尽量分离。
首先我们计算 x i x_i xi x j x_j xj之间的相似度 p i j p_{ij} pij:
p i j = e x p ( − ∣ ∣ x i − x j ∣ ∣ 2 / ( 2 σ i 2 ) ) ∑ k ≠ i e x p ( − ∣ ∣ x i − x k ∣ ∣ 2 ) / ( 2 σ i 2 ) p_{ij} = \frac{exp(-||x_i-x_j||^2/(2\sigma_i^2))}{\sum_{k \neq i}exp(-||x_i-x_k||^2)/(2\sigma_i^2)} pij=k̸=iexp(xixk2)/(2σi2)exp(xixj2/(2σi2))
σ i 表 示 以 数 据 点 x i 为 均 值 的 高 斯 方 差 \sigma_i表示以数据点x_i为均值的高斯方差 σixi
当降至低维时,得到 x i 和 x j x_i和x_j xixj的相似度为:
q

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值