SNE
原理分析
核心:将欧几里得距离转换为条件概率来表达点与点之间的相似度。
假设我们n个高维有数据 x 1 , x 2 . . . x n x_1,x_2...x_n x1,x2...xn,我们需要将其降至低维,需要保证的是讲相似的点尽量聚在一起,不相似的点尽量分离。
首先我们计算 x i x_i xi和 x j x_j xj之间的相似度 p i j p_{ij} pij:
p i j = e x p ( − ∣ ∣ x i − x j ∣ ∣ 2 / ( 2 σ i 2 ) ) ∑ k ≠ i e x p ( − ∣ ∣ x i − x k ∣ ∣ 2 ) / ( 2 σ i 2 ) p_{ij} = \frac{exp(-||x_i-x_j||^2/(2\sigma_i^2))}{\sum_{k \neq i}exp(-||x_i-x_k||^2)/(2\sigma_i^2)} pij=∑k̸=iexp(−∣∣xi−xk∣∣2)/(2σi2)exp(−∣∣xi−xj∣∣2/(2σi2))
σ i 表 示 以 数 据 点 x i 为 均 值 的 高 斯 方 差 \sigma_i表示以数据点x_i为均值的高斯方差 σi表示以数据点xi为均值的高斯方差
当降至低维时,得到 x i 和 x j x_i和x_j xi和xj的相似度为:
q