【AI生成视频工具】阿里推出图片生成视频Ai工具,免费无限制国内可用,比GEN2香多了

大家好,我是龙一,专注AI轻创副业项目分享,今天给大家分享一款阿里近日推出的开源的图片生成视频的Ai工具,目前可免费使用,没有使用次数的限制,效果非常好,不得不说比RunwayGen2香多了。

可以根据用户输入的静态图像和文本生成目标接近、语义相同的视频,生成的视频具高清(1280 * 720)、宽屏(16:9)、时序连贯、质感好等特点。

在这里插入图片描述

这个项目的名字叫I2VGen-XL,由阿里达摩院研发的高清视频生成基础模型,旨在解决根据输入图像生成高清视频任务。生成的视频还支持二次修改和高清化,你要是觉得不满意可以多点几下重新生成,内容要是不满意还可以输入提示词调整视频内容、运镜、运动方向等等,输出高清视频。

具体的原理如下,参数量共计约37亿,总结下来分为两个阶段,就是通过输入图片生成图片序列,然后可以通过文字进行微调并生成高清图片。

在这里插入图片描述

下面展示一下具体的生成的案例,由于文章无法放入视频,我选择插入gif图片,展示效果会大打折扣,想搞完整高清的可以去我的视频号看最新视频介绍。左边是原图,右边是生成的效果。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

同时还支持自己部署,不过对于设备的要求比较高。I2VGen-XL包含2个模型:图片生成视频模型MS-Image2Video和视频生成视频模型MS-Vid2Vid。

MS-Image2Video建立在Stable Diffusion之上,如给出的原理图所示,通过专门设计的时空UNet在隐空间中进行时空建模并通过解码器重建出最终视频。

在1*A100的环境配置下运行 (可以单卡运行, 图生视频模型显存要求20G,视频生成视频显存要求28G)

torch2.0.1+cu117,python>=3.8

安装miniconda

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

一直[ENTER], 最后一个选项yes即可

sh Miniconda3-latest-Linux-x86_64.sh

conda虚拟环境搭建

conda create --name ms-sft python=3.8
conda activate ms-sft

安装最新的ModelScope

pip install "modelscope" --upgrade -f https://pypi.org/project/modelscope/

确定你的系统安装了ffmpeg命令,如果没有,可以通过以下命令来安装

sudo apt-get update && apt-get install ffmpeg libsm6 libxext6  -y

安装依赖库

pip install xformers==0.0.20
pip install torch==2.0.1
pip install torchsde
pip install open_clip_torch>=2.0.2
pip install opencv-python-headless
pip install opencv-python 
pip install einops>=0.4
pip install rotary-embedding-torch
pip install fairscale 
pip install scipy
pip install imageio
pip install pytorch-lightning

下载好模型,模型链接后台回复Ai视频即可获取。

通过以下代码,实现模型的下载和推理。

第一步:图生视频 (所需显存单卡20G)

from modelscope.pipelines import pipeline
from modelscope.outputs import OutputKeys

pipe = pipeline(task="image-to-video", model='damo/Image-to-Video', model_revision='v1.1.0')

IMG_PATH: your image path (url or local file)

IMG_PATH = './example.png'
output_video_path = pipe(IMG_PATH, output_video='./output.mp4')[OutputKeys.OUTPUT_VIDEO]
print(output_video_path)

第二步:提升视频分辨率 (所需显存单卡28G)

pipe =pipeline(task="video-to-video", model='damo/Video-to-Video', model_revision='v1.1.0')

# VID_PATH: your video path
# TEXT : your text description
VID_PATH = './output.mp4'
TEXT = 'A lovely little fox is among the flowers.'
p_input = {
            'video_path': VID_PATH,
            'text': TEXT
        }

output_video_path = pipe(p_input, output_video='./output.mp4')[OutputKeys.OUTPUT_VIDEO]
print(output_video_path)

如果自己不想部署,想白嫖的兄弟,公z号【龙一的编程life】后台回复Ai视频获取体验链接。

其他更多Ai干货看我往期作品!

好了内容分享到这里就结束了,我是龙一,持续为大家分享AI+自媒体的干货,请大家多多关注点赞!

### 回答1: AI 可以通过学习大量的图像数据来生成 3D 模型。这些模型可以用于许不同的目的,如游戏开发、建筑设计和动画制作。为了生成 3D 模型,AI 系统通常需要输入许 2D 图像,这些图像可以是从不同角度拍摄的照片或者是从视频中截取的帧。AI 系统会自动学习如何将这些图像组合起来,生成一个连贯的 3D 模型。这种技术可以大大简化 3D 模型制作的过程,并且可以使得模型更加精确。 ### 回答2AI 图片生成 3D 模型是指利用人工智能技术,将2D 图片转换成3D 模型的过程。目前,AI 图片生成 3D 模型的发展已经取得了令人瞩目的进展。 在传统的方法中,要生成一个3D模型,需要对物体进行繁琐的三维扫描和建模。而AI 图片生成 3D 模型则可以更快速地将2D 图像转换成精确的3D 模型。这种技术的应用非常广泛,可以用于电影、游戏、工业设计等领域。 AI 图片生成 3D 模型的原理是利用神经网络,通过对大量的图像样本进行学习和训练,然后通过深度学习算法来预测目标图像的三维结构。AI 模型会识别图片中的形状、纹理和细节等特征,然后根据这些特征生成相应的3D模型。 AI 图片生成 3D 模型的发展给设计师、艺术家和模型制作人带来了巨大便利。以前制作一个3D模型需要花费很时间和精力,而现在只需提供一个2D 图片作为输入,AI 系统便可根据图像特征生成相应的3D模型。这大大加快了模型制作的速度,并且能够更精确地呈现图像的细节。 当然,AI 图片生成 3D 模型的技术还有一些挑战和限制。目前该技术在识别复杂的形状和纹理方面仍然有待改进,也需要更的训练数据来提高准确性。另外,3D模型的质量和细节水平也取决于输入图片的质量和清晰度。 综上所述,AI 图片生成 3D 模型是一项非常有前景和发展潜力的技术。随着技术的进一步改进,我们可以期待AI 图片生成 3D 模型在各个领域的应用得到更广泛的推广并提供更精确的3D模型。 ### 回答3: AI 图片生成3D模型是一种利用人工智能技术将平面图片转换为具有三维立体效果的模型的过程。这一技术的发展在计算机视觉和图像处理领域引起了广泛的关注和研究。 AI 图片生成3D模型的过程通常分为三个主要步骤。首先是图像识别与分析,AI系统会对输入的图片进行分析和处理,提取出图片中的特征,并将其转换为对应的三维形状和结构信息。其次是模型生成与优化,AI系统会根据提取到的特征,利用先进的算法和模型生成对应的3D模型。最后是模型优化与细化,通过迭代优化的方式,进一步细化生成的3D模型,使之更加逼真和精细。 AI 图片生成3D模型技术的应用非常广泛。在游戏开发领域,AI可以将角色设计师的平面画稿转换为真实的3D模型,节省了人工建模的时间和成本。在虚拟现实和增强现实领域,AI可以将真实世界中的物体或场景拍摄成图片,然后生成相应的3D模型,为用户提供更加沉浸式的体验。此外,在医学领域,AI生成的3D模型可用于解剖学教育和手术模拟等方面,有助于医生培训和医疗技术的发展。 虽然AI 图片生成3D模型技术在许领域具有广泛应用,但仍然存在一些挑战和问题。例如,对于复杂的场景或物体,AI系统可能无法完全准确地生成对应的3D模型,需要人工的干预和修正。此外,模型的生成和优化过程可能需要较长的时间和计算资源。 总的来说,AI 图片生成3D模型技术的发展为许行业带来了便利和创新,但仍需要不断的研究和改进,以提高生成模型的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值