【LIMU-Bert论文阅读】

LIMU-BERT: Unleashing the Potential of Unlabeled Data for IMU Sensing Applications

题目重点:

  • 充分利用无标签数据
  • 适用于IMU传感器应用(并没有指出specfic task)

文章核心:

如何根据IMU数据的特征设计出LIMU-Bert,从而提取出泛化特征。

ABSTRACT

本文并没有针对某一项任务而设计,而是从IMU应用角度出发,考虑大多数工作都需要大量且高质量的有标签数据,这需要high annotation和training costs,相比较而言无标签数据更加易得。所以设计了LIMU-Bert表征学习模型:

  • 充分利用无标签数据
  • 提取出泛化特征,如temporal relations和feature distributions

文章成果:

  • 通过观察IMU数据,提出了适用于IMU应用的方法
  • task-specific模型使用LIMU-BERT提取到的表征,可以通过少量的有标签数据取得优秀的performance
  • 在HAR和DPC两个任务上进行验证,取得了好的效果
  • 模型lightweight,可以部署到移动设备上

INTRODUCTION

目前工作遇到的困难

严重依赖于监督学习过程,其需要大量的有标签数据来训练模型。对有标签数据的大量需求,阻碍了实践中的使用。

  • 由于有标签数据采集过程十分耗时耗力,所以十分稀缺。
  • 需要采集大量的数据,保证移动设备,用户,环境等足够充分,才可以获得泛化的模型。
文章意义

为了解决有标签数据的挑战,该篇文章提出了一种自监督表征学习模型,可以利用大量的无标签数据来提取泛化的特征。之后,task-specific模型可以使用少量的无标签数据进行训练。(两阶段)

文章挑战

需要从IMU数据中得到哪些一般特征?

  • distributions of individual measurements of IMU sensors(IMU传感器的单个测量值的分布)

eg 当实验人员的活动由站立变为走路时,acc和gyr的测量值变大

  • temporal relations in continuous measurements(连续测量值的时间关系)

eg 当设备方向变化时,加速度计的三轴分量的相关性不同。
如何从IMU数据中提取出如上的泛化特征?
本文设计了数据融合和归一化、有效的训练方法、结构优化等技术,并将其嵌入到BERT框架中。

PRELIMINARIES

Representation Learning

BERT是一种有效的自然语言处理(NLP)自监督学习模型,具有两个自我监督的任务:MLM和NSP。BERT 可以学习文本数据中的上下文关系,并据此为每个单词生成有效的嵌入。经过自监督的训练过程后,预训练的模型可以与fine-tune连接起来,通过监督训练来执行各种NLP任务。
受BERT的启发,采用一种类似Bert有效的自监督技术。作为时间序列类型的数据,IMU传感器数据也包含了丰富的上下文关系。从未标记的IMU数据中提取有效的表征,可以提高下游模型的性能,并且降低对标签数据的要求。

Uniqueness of IMU Sensing

为了设计LIMU-BERT,使预训练模型适用于IMU数据应用,将IMU数据进行可视化,并分析其特征,这些特征将作为后续的指导。
在这里插入图片描述

为了进行HAR和DPC两个任务,本文针对不同活动,传感器的不同位置进行了数据可视化,得出了以下三个方法指导:

Fusion matters

观察:在图(a)中,用户所处的状态是,将传感器放入包中,处于静止状态。观察到陀螺仪的数值波动很大,而加速度计的数值几乎不变。所以得出结论:陀螺仪对周围环境更加敏感。

如果仅使用陀螺仪数据,则环境噪声很多,难提取出高质量的表征。所以如果同时考虑加速度计数据和陀螺仪数据,将会削弱陀螺仪范围波动的影响。
结论:所以多个传感器的交叉引用可以提供更多信息并提高整体性能。
除此之外,考虑到多模态方向,表示学习模型应该支持多个IMU传感器的数据融合,所以在LIMU-BERT中应该考虑这个问题。

Distribution matters

观察:图(b),©,(d),可以观察到当用户走路时,陀螺仪读数在 (-5, 5) 范围内,而当用户跑步时,陀螺仪读数分布在-15到15之间。

在不同活动中,单个传感器的测量值的范围差异很大。(Range)

观察:图(b),©,可以观察到当设备放在包中,则 y 轴上的加速度计读数与其他两个轴相比读书都大,但当设备放在口袋中时,它们的相关性不同。

当设备放置不同时,每个传感器三轴读数之间的关系也会发生变化。(Relation)
结论:IMU读数的分布包含了丰富的信息,这是LIMU-BERT应该捕获的一个特征。所以如果我们想捕获一般特征,则任何可能会破坏分布信息的转换,都不应该应用。

Context matters(时间窗口?)

观察:图(a),由于人类活动很复杂,偶尔的波动是不可避免的。但是走路©和跑步(d)的数据有明显的周期性规律,这是区分它们与静止的特征,解释周期性的原因可以为步频等。通过观察用户在图1(b)和图1©中行走时的IMU读数,在口袋中的智能手机的读数有更显著的变化。这很可能是因为智能手机的方向随着腿的移动而经常改变。

结论:时间关系在IMU数据的表示学习中也起着重要的作用。

Potential Application

在该节中解释了为什么选择HAR和DPC两个任务。

DESIGN

总体设计

在这里插入图片描述

整个模型包括三个组件和两个阶段。

三个组件

LIMU-BERT:将未标记的IMU数据作为输入,并输出高级表示或特征。
Decoder:根据学习到的特征重构未标记的数据。
Classifi

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值