7、hadoop的优化与发展
7.1、HDFS1.x的局限与不足
- 单点故障
- 每个群集只有一个NameNode,NameNode存在单点故障(SPOF)。
- 如果该计算机或进程不可用,则整个群集在整个NameNode重新启动或在另一台计算机上启动之前将不可用
- 如果发生意外事件(例如机器崩溃),则在操作员重新启动NameNode之前,群集将不可用。
- 计划内的维护事件,例如NameNode计算机上的软件或硬件升级,将导致群集停机时间的延长。
- 内存占用过多(OOM)
- namenode随着业务的增多,内存占用也会越来越多
- 如果namenode内存占满,将无法继续提供服务
- 水平扩展不行
- 将来服务器启动的时候,启动速度慢
- 业务隔离性差
-
存储:有可能我们需要存储不同部门的数据
- 计算:有可能存在不同业务的计算流程
-
项目后期namenode的吞吐量将会是集群的瓶颈
-
客户端所有的请求都会先访问NameNode
-
- 日志文件存放
- 如果NameNode出现不能回复情况,导致数据丢失。
7.2、Hadoop2.x的优化
组件 | Hadoop1.0的问题 | Hadoop2.0的改进 |
---|---|---|
HDFS | 单一名称节点,存在单点失效问题 | 设计了HDFS HA,提供名称节点热备机制 |
HDFS | 业务隔离性差 水平扩展不行 | 设计了HDFS Federation(HDFS联邦),管理多个命名空间 |
HDFS | 日志文件存放 | 设计了共享存储系统QJM(仲裁日志管理器),第三方存储日志 |
MapReduce | 资源管理效率低 | 设计了新的资源管理框架YARN |
- HDFS2.x
-
NameNode节点的高可用
- HA–high availability
-
NameNode业余的水平扩展
- Federation 联邦
-
8、HDFS 2.x组件----即HDFS HA
设计思想
- HDFS 2.x启用了主备节点切换模式(1主1备)
- HA集群设置两个名称节点,“活跃(Active)”和“待命(Standby)”
- 当主节点出现异常的时候,集群直接将备用节点切换成主节点
- 要求备用节点马上就要工作
- 主备节点内存几乎同步
- 有独立的线程HealthMonitor对主备节点进行监控健康状态
- Failover Controller Active 故障转移控制器
- 需要有一定的选举机制,帮助我们确定主从关系
- Zookeeper确保一个名称节点在对外服务
- 我们需要实时存储日志的中间件
8.1、详情
- NameNode Active(ANN):主节点
- 与原Namenode功能 一致;记录 数据信息,保持与DN心跳;记录日志;
- NameNode Standby(SNN):备节点
- 同ANN功能且多了合并日志Edits和FsImage功能
- DateNode(DN):数据结点
- 与原DN功能一样,存储数据;
- 同时两个结点保持心跳和汇报
- Quorum Journal Manager(QJM):仲裁(一致性)日志管理系统, JN*3=QJM
- 实现日志管理与日志数据同步
- 日志有ANN生成,同时发送到所有的JN的每个结点上,半数以上收到则日志生效
- 日志在QJM上存储成功后,ANN开始执行命令
- SNN每隔一定时间去QJM上获取日志,同步数据。
- Failover Controller(ZKFC):(故障转移控制器)
- 对 NameNode 的主备切换进行总体控制,能及时检测到 NameNode 的健康状况
- 在ANN 故障时借助 Zookeeper 实现自动的主备选举和切换
- 为了防止因为NN的GC失败导致心跳受影响,ZKFC作为一个deamon(守护)进程从NN分离出来
- 每次启动时可以发动 主备节点的竞选
- ZooKeeper
- 为主备切换控制器提供主备选举支持。
- 辅助投票
- 和ZKFC保持心跳机制,确定ZKFC的存活
8.2、ZKFC工作流程
- 启动时:
- 当集群启动时,主备节点的概念是很模糊的
- 当ZKFC只检查到一个节点是健康状态,直接将其设置为主节点
- 当zkfc检查到两个NN节点是的健康状态,发起投票机制
- 选出一个主节点,一个备用节点,并修改主备节点的状态
- 运行时:
- 由 ZKFailoverController、HealthMonitor 和 ActiveStandbyElector 这 3 个组件来协同实现主备切换
- ZKFailoverController启动的时候会创建 HealthMonitor 和 ActiveStandbyElector 这两个主要的内部组件
- HealthMonitor 主要负责检测 NameNode 的健康状态
- ActiveStandbyElector 主要负责完成自动的主备选举,内部封装了 Zookeeper 的处理逻辑
- 由 ZKFailoverController、HealthMonitor 和 ActiveStandbyElector 这 3 个组件来协同实现主备切换
主备节点正常切换
- NameNode 在选举成功后,ActiveStandbyElector会在 zk 上创建一个ActiveStandbyElectorLock 临时节点,而没有选举成功的备 NameNode 中的 ActiveStandbyElector会监控这个节点
- 如果 Active NameNode 对应的 HealthMonitor 检测到 NameNode 的状态异常时, ZKFailoverController 会主动删除当前在 Zookeeper 上建立的临时节点ActiveStandbyElectorLock
- 如果是 Active NameNode 的机器整个宕掉的话,那么跟zookeeper连接的客户端线程也挂了,会话结束,那么根据 Zookeepe的临时节点特性,ActiveStandbyElectorLock 节点会自动被删除,从而也会自动进行一次主备切换
- 处于 Standby 状态的 NameNode 的 ActiveStandbyElector 注册的监听器就会收到这个节点的 NodeDeleted 事件,并创建 ActiveStandbyElectorLock 临时节点,本来处于 Standby 状态的 NameNode 就选举为Active NameNode 并随后开始切换为 Active 状态。
8.3、脑裂brain-split
- 定义
- 脑裂是Hadoop2.X版本后出现的全新问题,实际运行过程中很有可能出现两个namenode Active同时服务于整个集群的情况,这种情况称之为脑裂。
- 原因
- 脑裂通常发生在主从namenode切换时,由于ActiveNameNode的网络延迟、设备故障等问题,另一个NameNode会认为活跃的NameNode成为失效状态,此时StandbyNameNode会转换成活跃状态,此时集群中将会出现两个活跃的namenode。因此,可能出现的因素有网络延迟、心跳故障、设备故障等。
- 脑裂场景
- NameNode 可能会出现这种情况,NameNode 在垃圾回收(GC)时,可能会在长时间内整个系统无响应
- zkfc客户端也就无法向 zk 写入心跳信息,这样的话可能会导致临时节点掉线,备 NameNode 会切换到 Active 状态
- 这种情况可能会导致整个集群会有同时有两个Active NameNode
- 脑裂问题的解决方案是隔离(Fencing)
- 1.第三方共享存储:任一时刻,只有一个 NN 可以写入;
- 2.DataNode:需要保证只有一个 NN 发出与管理数据副本有关的命令;
- 3.Client需要保证同一时刻只有一个 NN 能够对 Client 的请求发出正确的响应。
- (a) 每个NN改变状态的时候,向DN发送自己的状态和一个序列号。
- (b) DN在运行过程中维护此序列号,**当failover时,新的NN在返回DN心跳时会返回自己的active状态和一个更大的序列号。**DN接收到这个返回是认为该NN为新的active。
- © 如果这时原来的active(比如GC)恢复,返回给DN的心跳信息包含active状态和原来的序列号,这时DN就会拒绝这个NN的命令。
- 解决方案
- ActiveStandbyElector为了实现 fencing,当NN成为ANN之后创建Zookeeper临时节点ActiveStandbyElectorLock,创建ActiveBreadCrumb 的持久节点,这个节点里面保存了这个 Active NameNode的地址信息(node-01)
- Active NameNode的 ActiveStandbyElector在正常的状态下关闭 Zookeeper Session 的时候,会一起删除这个持久节点
- 但如果 ActiveStandbyElector在异常的状态下关闭,那么由于 /hadoop-ha/${dfs.nameservices}/ActiveBreadCrumb 是持久节点,会一直保留下来,后面当另一个 NameNode 选主成功之后,会注意到上一个 Active NameNode 遗留下来的这个节点,从而会回调 ZKFailoverController的方法对旧的 Active NameNode 进行 fencing。
- 首先尝试调用这个旧 Active NameNode 的 HAServiceProtocol RPC 接口的 transitionToStandby 方法,看能不能把它转换为 Standby 状态;
- 如果 transitionToStandby 方法调用失败,那么就执行 Hadoop 配置文件之中预定义的隔离措施。
- sshfence:通过 SSH 登录到目标机器上,执行命令 fuser 将对应的进程杀死
- shellfence:执行一个用户自定义的 shell 脚本来将对应的进程隔离
- 在成功地执行完成 fencing 之后,选主成功的 ActiveStandbyElector 才会回调 ZKFailoverController 的 becomeActive 方法将对应的 NameNode 转换为 Active 状态,开始对外提供服务。
- 新的主创建临时节点ActiveStandbyElectorLock,创建持久化节点ActiveBreadCrumb ,并将自己的主机地址Node02赋值给初始化节点
9、HDFS Federation(HDFS 联邦)
- HDFS Federation就是使得HDFS支持多个命名空间,并且允许在HDFS中同时存在多个Name Node。
9.1、HDFS 1.x 问题
- 单点故障问题
- Namespace(命名空间)的限制
- NameNode所能存储的对象(文件+块)数目受到NameNode所在JVM的heap size的限制。
- 50G的heap能够存储20亿(200million)个对象,这20亿个对象支持4000个DataNode,12PB的存储
- DataNode从4T增长到36T,集群的尺寸增长到8000个DataNode。存储的需求从12PB增长到大于100PB。
- 不可以水平扩展(是否可以通过纵向扩展来解决?)
- 系统整体性能受限于单个名称节点的吞吐量
- 单个名称节点难以提供不同程序之间的隔离性
- HDFS HA是热备份,提供高可用性,但是无法解决可扩展性、系统性能和隔离性
9.2 、HDFS 联邦
- NameNode提供了命名空间(NameSpace)和块(Block)管理功能。
- HDFS 联邦拥有多个独立的命名空间,每个空间管理属于自己的一组块,这些同组的块构成了“块 池”(Block Pool)。
- 所有的NameNode 会共享底层的数据节点的存储资源。数据节点是一个物理概念,块池则属于逻辑概念。
-
块池Block Pool
- Block pool(块池)就是属于单个命名空间的一组block(块)管理区域
- 每一个datanode为所有的block pool存储
- Datanode是一个物理概念,而block pool是一个重新将block划分的逻辑概念
- 一个Namenode失效不会影响其下的datanode为其他Namenode的服务
- datanode与Namenode建立联系并开始会话后自动建立Block pool
-
Namespace Volume(命名空间卷)
- 一个Namespace和它的Block Pool合在一起称作Namespace Volume
- Namespace Volume是一个独立完整的管理单元。当一个Namenode/Namespace被删除,与之相对应的Block Pool也也被删除。
-
通过多个namenode把元数据的存储和管理分散到多个节点中
- 降低单个NN节点数据压力,计算压力
-
命名空间卷可以通过增加机器来进行横向水平扩展
- 可以让更多的节点参与到运算
- namespace命名空间,通过这种方式确定要处理数据的路径
-
我们可以通过namenode和namespace组合使用
- 所有的nn共享dn
- 但是每一个namespace会单独管理自己的块
- 会创建一个管理块的机制:blocks pool
9.3、HDFS Federation的访问方式
- 对于Federation中的多个命名空间,可以采用客户端挂载表(Client Side Mount Table)方式进行数据共享和访问。
- 客户可以访问不同的挂载点来访问不同的子命名空间。
- 把各个命名空间挂载到全局“挂载表”(mount-table)中,实现数据全局共享。
- 同样的命名空间挂载到个人的挂载表中,就成为应用程序可见的命名空间。
9.4、HDFS Federation优势
HDFS Federation设计可解决单名称节点存在的以下几个问题:
- (1)HDFS集群扩展性。多个名称节点各自分管一部分目录,使得一个集群可以扩展到更多节点,不再像HDFS1.0中那样由于内存的限制制约文件存储数目。
- (2)性能更高效。多个名称节点管理不同的数据,且同时对外提供服务,将为用户提供更高的读写吞吐率。
- (3)良好的隔离性。用户可根据需要将不同业务数据交由不同名称节点管理,这样不同业务之间影响很小。
需要注意的,HDFS Federation并不能解决单点故障问题,也就是说,每个名称节点都存在在单点故障问题,需要为每个名称节点部署一个后备名称节点,以应对名称节点挂掉对业务产生的影响。
10、Hadoop3.x新特性
10.1、Erasure Encoding 技术
- 简介
- HDFS默认情况下,Block的备份系数是3,一个原始数据块和其他2个副本。
- 其中2个副本所需要的存储开销各站100%,这样使得200%的存储开销
- 正常操作中很少访问具有低IO活动的冷数据集的副本,但是仍然消耗与原始数据集相同的资源量。
- EC技术
- EC(擦除编码)和HDFS的整合可以保持与提供存储效率相同的容错。
- HDFS:一个副本系数为3,要复制文件的6个块,需要消耗6*3=18个块的磁盘空间
- EC:6个数据块,3个奇偶校验块
- 擦除编码需要在执行远程读取时,对数据重建带来额外的开销,因此他通常用于存储不太频繁访问的数据
- EC(擦除编码)和HDFS的整合可以保持与提供存储效率相同的容错。
10.2、NameNode多个备用
-
在Hadoop3中允许用户运行多个备用的NameNode。
- 例如,通过配置三个NameNode(1个Active NameNode和2个Standby NameNode)和5个JournalNodes节点
- 集群可以容忍2个NameNode节点故障。
10.3、服务器端口更改
- 早些时候,多个Hadoop服务的默认端口位于Linux端口范围以内。
- 因此,具有临时范围冲突端口已经被移除该范围
10.4、DataNode 负载均匀
-
单个数据节点配置多个数据磁盘,在正常写入操作期间,数据被均匀的划分,因此,磁盘被均匀填充。
-
在维护磁盘时,添加或者替换磁盘会导致DataNode节点存储出现偏移
-
这种情况在早期的HDFS文件系统中,是没有被处理的。
-
-
Hadoop3通过新的内部DataNode平衡功能来处理这种情况,这是通过hdfs diskbalancer CLI来进行调用的。执行之后,DataNode会进行均衡处理
-
10.5、蚊子腿
-
JDK:
- Hadoop3中,最低版本要求是JDK8,所以低于JDK8的版本需要对JDK进行升级,方可安装使用Hadoop3
-
Yarn:
- 提供YARN的时间轴服务V.2,以便用户和开发人员可以对其进行测试,并提供反馈意见
-
优化Hadoop Shell脚本
-
重构Hadoop Client Jar包
-
支持随机Container
-
MapReduce任务级本地优化
-
支持文件系统连接器