数据建模核心原理
一、数据建模基础概念
1.1 数据模型定义
数据模型是现实世界数据特征的抽象表示,包含:
- 数据结构定义
- 数据操作规则
- 数据约束条件
1.2 建模层次体系
模型类型 | 作用描述 | 输出物示例 |
---|---|---|
概念模型 | 业务实体与关系抽象 | ER图/业务对象图 |
逻辑模型 | 数据结构规范化设计 | 规范化表结构设计 |
物理模型 | 物理存储实现方案 | DDL语句/分区策略 |
二、主流建模方法论
2.1 维度建模(Kimball)
核心要素:
- 事实表(事务/周期快照/累积快照)
- 维度表(缓慢变化维处理策略)
- 星型/雪花模型选择依据
适用场景:
- 分析型业务场景
- 需要快速查询响应
- 面向主题的数据集市建设
2.2 范式建模(Inmon)
核心特征:
- 3NF规范化设计
- 企业级数据仓库构建
- 强调数据一致性
实施要点:
- 消除数据冗余
- 维护数据完整性
- 支持OLTP系统集成
2.3 Data Vault 2.0
组件构成:
- Hub(业务键)
- Link(关系)
- Satellite(描述属性)
优势特点:
- 支持敏捷开发
- 历史数据追踪
- 高可扩展性
2.4 宽表模型
典型特征:
- 字段冗余设计
- 查询性能优化
- 适合明细查询
三、建模关键原则
-
业务驱动原则
- 深度理解业务过程
- 确认关键业务指标
- 明确用户分析场景
-
可扩展性原则
- 预留扩展字段
- 采用模块化设计
- 支持历史数据追溯
-
一致性原则
- 统一维度管理
- 标准化指标定义
- 企业级数据字典
-
性能优化原则
- 合理冗余设计
- 分区策略优化
- 预聚合方案设计