1. 最大二叉树 (思考为什么构建二叉树都是前序遍历)
给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建:
创建一个根节点,其值为 nums 中的最大值。
递归地在最大值 左边 的 子数组前缀上 构建左子树。
递归地在最大值 右边 的 子数组后缀上 构建右子树。
前序遍历二叉树:前序遍历二叉树的流程是 中左右,先确定根节点后再确定左右子节点
本题的递归函数实现思路:
1.确定递归函数的参数和返回值,每次传入数组,左右边界点(nums, left, right),返回的是当前递归层确定的一个根节点
2.判断终止条件 当nums.size()==1的时候代表到达了叶子结点
3.确定单层递归逻辑:先寻找数组中的最大值;
class Solution {
public:
TreeNode* traversal(vector<int>& nums, int left, int right){
// 1.先判断终止条件
if(left >= right) return nullptr;
int maxIndex = left;
// 2.统一使用左闭右开的方式
for(int i=left+1; i<right; i++){
if(nums[i] > nums[maxIndex]){
maxIndex = i;
}
}
TreeNode* root = new TreeNode(nums[maxIndex]);
root->left = traversal(nums, left, maxIndex);
root->right = traversal(nums, maxIndex+1, right);
return root;
}
TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
return traversal(nums, 0, nums.size());
}
};
2. 合并二叉树
给你两棵二叉树: root1 和 root2 。
想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。
返回合并后的二叉树。
- 确定终止条件的时候,t1为空返回t2和t2为空返回t1已经包含了 t1和t2同时为空的情况
- 当一棵树的一个节点是null,另一个不是的话就直接将节点转接过来
class Solution {
public:
// 递归法
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
// 1.确定终止条件
if(t1 == NULL) return t2;
if(t2 == NULL) return t1;
// 2.确定每层的遍历逻辑
t1->val += t2->val;
t1->left = mergeTrees(t1->left, t2->left);
t1->right = mergeTrees(t1->right, t2->right);
return t1;
}
// 迭代法
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
if(t1 == NULL) return t2;
if(t2 == NULL) return t1;
queue<TreeNode*> que;
que.push(t1);
que.push(t2);
while(!que.empty()){
TreeNode *node1 = que.front(); que.pop();
TreeNode *node2 = que.front(); que.pop();
node1->val += node2->val;
// 两棵树的左节点都不为空
if(node1->left != NULL && node2->left != NULL){
que.push(node1->left);
que.push(node2->left);
}
// 两棵树的右节点都不为空
if(node1->right != NULL && node2->right != NULL){
que.push(node1->right);
que.push(node2->right);
}
// 这里不进行 push 是因为有一颗树的当前节点已经没有子节点了,直接将另一棵树的子节点拿过来就可以
if(node1->left == NULL && node2->left != NULL){
node1->left = node2->left;
}
if(node1->right == NULL && node2->right != NULL){
node1->right = node2->right;
}
}
return t1;
}
};
3.二叉树中的搜索
给定二叉搜索树(BST)的根节点 root 和一个整数值 val。
你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null 。
class Solution {
public:
// 递归法
// 1.确定参数和返回值
TreeNode* searchBST(TreeNode* root, int val) {
// 2. 确定终止条件
if(root==NULL || root->val == val) return root;
// 3.单层逻辑
TreeNode* result = NULL;
if(root->val > val) {
result = searchBST(root->left, val);
}else {
result = searchBST(root->right, val);
}
return result;
}
// 迭代法
TreeNode* searchBST(TreeNode* root, int val) {
while(root != NULL){
if(root->val == val) return root;
else if(root->val > val) root = root->left;
else root = root->right;
}
return NULL;
}
4.验证二叉搜索树
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
- 注意点
- 遍历的时候只判断根节点 和 左右子节点的话, 可能会不满足 左右子节点不小于/大于 父节点的父节点的条件
- 普通的递归是不满足当前题目的,应当使用中序递归,而且需要记录前一个节点的值,来判断与当前节点的大小
class Solution {
public:
// 正确的递归写法
TreeNode* pre = NULL;
bool isValidBST(TreeNode* root) {
if(root == NULL) return true;
bool left = isValidBST(root->left);
if(pre != NULL && pre->val >= root->val) return false;
pre = root;
bool right = isValidBST(root->right);
return left && right;
}
// 错误的递归方法
bool isValidBST_False(TreeNode* root) {
// 确定终止条件
if(root == NULL) return true;
else if(root->left != NULL && root->left->val > root->val) return false;
else if(root->right != NULL && root->right->val < root->val) return false;
bool left = isValidBST(root->left);
bool right = isValidBST(root->right);
return left && right;
}
// 正确的递归方法
// 中序遍历,正确的二叉树会得到一个有序序列
void midOrder(TreeNode* root, vector<int>& iv){
if(root == NULL) return;
midOrder(root->left, iv);
iv.push_back(root->val);
midOrder(root->right, iv);
}
bool isValidBST1(TreeNode* root) {
vector<int> result;
midOrder(root, result);
for(int i=0; i<result.size()-1; i++){
if(result[i] >= result[i+1]){
return false;
}
}
return true;
}
};