第29天-回溯-第七章 ● 332.重新安排行程 ● 51. N皇后 ● 37. 解数独

文章介绍了如何利用回溯算法解决LeetCode中的三个经典问题:1.通过优化存储结构和回溯策略重新安排行程;2.实现N皇后问题的解决方案,判断皇后位置合法性并递归放置;3.解数独,验证数字在行、列和3x3宫内的合法性并进行回溯操作。这些方法都基于递归和回溯思想,有效地搜索所有可能的解决方案。
摘要由CSDN通过智能技术生成

1.重新安排行程

- LeetCode链接
在这里插入图片描述

使用 unordered_map 存储出发机场, map作为底层为红黑树,因此存入的数据是有序的,来按序存储到达的机场以及可以到达的次数
在遍历的时候由于到达机场的存储使用的是map有序的,因此第一个符合条件的行程就是最优的行程

class Solution {
public:
    // targets统计的是出发机场tarets.first  和多个对应的到达机场 map<string, int>
    unordered_map<string, map<string, int>> targets;
    bool backtrcking(int ticketNum, vector<string>& result){
        if(result.size() == ticketNum + 1){
            return true;
        }

        for(pair<const string, int>& target : targets[result[result.size()-1]]){
            if(target.second > 0){      // 记录到达机场是否飞过
                result.push_back(target.first);
                target.second--;
                if(backtrcking(ticketNum, result)) return true;
                result.pop_back();
                target.second++;
            }
        }
        return false;
    }

    vector<string> findItinerary(vector<vector<string>>& tickets) {
        targets.clear();
        vector<string> result;
        for(const vector<string>& vec : tickets){
            targets[vec[0]][vec[1]]++;      // 记录映射关系
        }

        result.push_back("JFK");            // 起始机场
        backtrcking(tickets.size(), result);
        return result;
    }
};
  • 自己理解写出来的方法,但是会超时
class Solution {
public:

    // 1. 每个tickets中的票都只能用一次, 使用used数组进行判断
    // 2. 递归终止条件,startIndex = tickets.size()
    // 3. 单层逻辑: 将当前遍历的票添加到结果,再将以ticket[1]为首的 ticket数组进行遍历

    vector<vector<string>> result;      // 记录所有的路径 
    vector<string> path;      // 记录最短的路程
    int used[301] = { 0 };

    void backtracking(vector<vector<string>>& tickets, string nextStart) {
		// 注意这里的终止条件, 需要==tickets.size()
        if (path.size() == tickets.size()) {
            path.push_back(nextStart);
            result.push_back(path);
            path.pop_back();
            return;
        }

        for (int i = 0; i < tickets.size(); i++) {
            if (used[i] != 1 && tickets[i][0] == nextStart) {
                path.push_back(nextStart);
                used[i] = 1;
                backtracking(tickets, tickets[i][1]);
                used[i] = 0;
                path.pop_back();
            }
        }
    }

    vector<string> findItinerary(vector<vector<string>>& tickets) {

        backtracking(tickets, "JFK");
        sort(result.begin(), result.end());
        // for (auto tickt : result) {
        //     for (auto name : tickt) {
        //         cout << name << "  ";
        //     }
        //     cout << endl;
        // }
        return result[0];
    }
};

2. N皇后问题

- LeetCode链接
在这里插入图片描述

  • 分析步骤
    • 判断皇后位置是否合法的函数 (判断当前位置所在列是否有其他棋子; 判断当前位置左上角45度是否有其他棋子;判断当前位置右上角135度是否有其他棋子)
    • 递归的返回值和参数 返回值为void即可, 参数 需要棋盘的大小n,当前递归的行数row,棋盘现在放置的皇后chessboard
    • 递归终止条件:当遍历可以达到最后一层并且成功遍历完 即 row==n的时候 代表当前chessboard放置是正确的
    • 单层递归逻辑:每一行(row) 都从前向后遍历col(0-n),判断该位置放置皇后是否合法 chessVaild
class Solution {
public:
    vector<vector<string>> result;

    // 1. 判断棋子位置合法的函数
    bool chessVaild(int row, int col, vector<string>& chessboard, int n){
        // 不合法的位置存在于 同一列与 45° 和 135° 角的两个斜线上

        // 判断是否在同一列上
        for(int i=0; i<row; i++){
            if(chessboard[i][col] == 'Q'){
                return false;
            } 
        }

        // 判断 45度 角上   (向上检查即可,因为当前遍历的层数,下层还没有添加元素)
        for(int i=row-1, j=col-1; i >=0 && j>=0; i--, j--){
            if(chessboard[i][j] == 'Q'){
                return false;
            }
        }

        // 判断 135度角
        for(int i=row-1, j=col+1; i>=0 && j<n; i--, j++){
            if(chessboard[i][j] == 'Q'){
                return false;
            }
        }

        return true;
    }

    // 2. 确定参数和返回值: 参数为当前的棋子数row(也就是当前的行数), 棋盘的大小n, 和当前行存放的棋子 chessborad
    void backtracking(int n, int row, vector<string>& chessboard){       // n表示当前行数和列数
        // 3.终止条件,当row==n的时候,也就是到了最后一行了,则将当前结果存入到result
        if(n == row){
            result.push_back(chessboard);
            return ;
        }

        // 4. 确定单层递归逻辑
        for(int col=0; col<n; col++){
            if(chessVaild(row, col, chessboard, n)){
                chessboard[row][col] = 'Q'; 
                backtracking(n, row+1, chessboard);
                chessboard[row][col] = '.';
            }
        }

    }

    vector<vector<string>> solveNQueens(int n) {
        result.clear();
        vector<string> chessboard(n, string(n, '.'));
        backtracking(n, 0, chessboard);

        return result;
    }
};

3. 解数独

- LeetCode链接

在这里插入图片描述

class Solution {
public:

    // 判断数字放置这里是否合法
    // 1.这一行是否合法
    // 2.这一列是否合法
    // 3.在3x3的宫内是否合法

    bool isValid(int row, int col, char val, vector<vector<char>>& board) {
        for (int i = 0; i < 9; i++) { // 判断行里是否重复
            if (board[row][i] == val) {
                return false;
            }
        }
        for (int j = 0; j < 9; j++) { // 判断列里是否重复
            if (board[j][col] == val) {
                return false;
            }
        }
        int startRow = (row / 3) * 3;
        int startCol = (col / 3) * 3;
        for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
            for (int j = startCol; j < startCol + 3; j++) {
                if (board[i][j] == val ) {
                    return false;
                }
            }
        }
        return true;
    }
    bool backtracking(vector<vector<char>>& board) {
        for (int i = 0; i < board.size(); i++) {        // 遍历行
            for (int j = 0; j < board[0].size(); j++) { // 遍历列
                if (board[i][j] == '.') {
                    for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适
                        if (isValid(i, j, k, board)) {
                            board[i][j] = k;                // 放置k
                            if (backtracking(board)) return true; // 如果找到合适一组立刻返回
                            board[i][j] = '.';              // 回溯,撤销k
                        }
                    }
                    return false;  // 9个数都试完了,都不行,那么就返回false
                }
            }
        }
        return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
    }

    void solveSudoku(vector<vector<char>>& board) {
        backtracking(board);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值