第39天-DP-第九章 ● 二维01背包 ● 一维01背包 ● 416. 分割等和子集

在这里插入图片描述

1.背包问题

- 链接
在这里插入图片描述

#include <iostream>
#include <vector>

using namespace std;


int wei_bag_prob() {
	vector<int> weight = { 1, 3, 4 };	// 物品的重量
	vector<int> value = { 15, 20, 30 };	// 物品的价值

	int bagweight = 4;					// 背包承重

	// 1.确定dp是二维数组的 以及dp[i][j]代表了 重量为0-i重量的物品 装在承重为j的背包中的最大价值
	vector<vector<int>> dp(weight.size(), vector<int>(bagweight+1, 0));

	// 2. 确定递推公式
	// 如果当前的物品重量weight[i] 大于背包承重j, 则dp[i][j] = dp[i-1][j]
	// 否则  dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]]+value[i]);

	// 3. 初始化数组
	for (int n = weight[0]; n <= bagweight; n++) {
		dp[0][n] = value[0];
	}

	for (int i = 1; i < weight.size(); i++) {
		for (int j = 0; j <= bagweight; j++) {
			if (weight[i] > j) dp[i][j] = dp[i - 1][j];
			else {
				dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i]);
			}
		}
	}

	return  dp[weight.size() - 1][bagweight];
}


int main() {
	int result = wei_bag_prob();
	cout << result << endl;

	return 0;
}

2. 一维01背包

  • 为什么一维是必须先遍历物品再遍历背包, 而二维的是什么顺序都可以
    • 先遍历物品的方式可以将 第i-1个物品的状态先保留下来,供第i个物品做参考
  • 为什么一维的背包重量必须是倒序遍历
    • dp[j] = dp[j-weight]+value[i] dp[1] = dp[1-1] + 15 = 15; dp[2] = dp[2-1]+15 = 30 正序遍历会导致有的value重复加两次
    • 倒叙dp[2] = dp[2-1] + 15 = 15 dp[1] = dp[1-1] + 15 = 15;
void test_1_wei_bag_problem() {
	vector<int> weight = { 1, 3, 4 };	// 物品的重量
	vector<int> value = { 15, 20, 30 };	// 物品的价值

	int bagweight = 4;

	// 1.确定dp数组 并且初始化
	vector<int> dp(bagweight + 1, 0);

	for (int i = 0; i < weight.size(); i++) {
		for (int j = bagweight; j >= weight[i]; j--) {
			dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
		}
	}

	cout << dp[bagweight] << endl;

}

3. 分割等和子集

- LeetCode链接

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = accumulate(nums.begin(), nums.end(), 0);
        if(sum % 2 == 1) return false;
        
        int target = sum / 2;
        sort(nums.begin(), nums.end());
        // 找出数组中是否有元素的和为 num
        // 使用背包问题的思想, nums中的元素为物品的value,   背包承重为sum/2
        // 背包的体积为sum / 2
        // 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
        // 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
        // 背包中每一个元素是不可重复放入。

        // 1.dp数组中的; dp[j]表示背包总重量是j;初始化直接全部为0
        vector<int> dp(target+1, 0);
        // 2.
        // 开始 01背包
        for(int i = 0; i < nums.size(); i++) {
            for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
                dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
            }
        }
        // 集合中的元素正好可以凑成总和target
        if (dp[target] == target) return true;
        return false;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值