第42天-DP-第九章● 70. 爬楼梯 (进阶) ● 322. 零钱兑换 ● 279.完全平方数

1. 爬楼梯(完全背包方式实现)

- LeetCode链接

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

class Solution {
public:
    int climbStairs(int n) {
        vector<int> dp(n+1, 0);
        dp[0] = 1;
        int m = 2;
        // 本题的结果中,不同的排序方式也属于不同的结果
        for(int i=1; i<=n; i++){       // 先遍历背包(当前是第几个台阶)
            for(int j=1; j<=m; j++){     
                if(i - j >= 0){          // 
                    dp[i] += dp[i-j];
                }
            }
        }

        return dp[n];
    }
};

2. 零钱兑换 (要求最少的个数)

- LeetCode链接

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        // 求的是组成amount 最少的硬币的数量
        vector<int> dp(amount+1, INT_MAX);
        dp[0] = 0;


        // 不同的排序顺序属于一种结果, 先遍历物品再遍历背包
        for(int i=0; i<coins.size(); i++){
            for(int j=coins[i]; j<=amount; j++){
                if( dp[j-coins[i]] != INT_MAX){
                    dp[j] = min(dp[j], dp[j-coins[i]]+1);
                }
            }
        }

        if(dp[amount] == INT_MAX) return -1;

        return dp[amount];
    }
};

3. 完全平方数

- LeetCode链接

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。=
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11

自己第一次做错了

class Solution {
public:
    int numSquares(int n) {

        // 如果n==1这里需要额外判断
        vector<int> val(n/2+2, 0);
        val[1] = 1;
        for(int i=1; i<=n/2; i++){
            val[i] = i*i;
        }

        vector<int> dp(n+1, INT_MAX);
        dp[0] = 0;

        // 先遍历背包数,再遍历数组
        for(int i=1; i<val.size(); i++){
            for(int j=val[i]; j<=n; j++){
                if(i > n){ break;}
                dp[j] = min(dp[j], dp[j-val[i]]+1);
            }
        }

        return dp[n];

    }
};
class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n+1, INT_MAX);
        dp[0] = 0;

        for(int i=1; i*i<=n; i++){      // 先遍历物品
            for(int j=i*i; j<=n; j++){
                dp[j] = min(dp[j], dp[j-i*i]+1);
            }
        }
        return dp[n];

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值