1. 买卖股票的最佳时机 III (最多两笔交易)
由于最多可以买卖两次,因此会有多种状态
- 第一次持有股票 dp[i][0], 第一次不持有股票dp[i][1]
- 第二次持有股票 dp[i][2], 第二次不持有股票 dp[i][3]
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
// 1.dp数组一共有四种状态
vector<vector<int>> dp(len, vector<int>(4));
// 2.确定递推公式
// 3.初始化
dp[0][0] = -prices[0]; // 第一次持有
dp[0][2] = -prices[0]; // 在第一天买入后卖出又买入
// dp[0][1] dp[0][3] 第一次不持有, 第二次持有和不持有都是0
for(int i=1; i<len; i++){
// 第一次持有 本来就持有dp[i-1][0] 或者 本来不持有-prices[i]
dp[i][0] = max(dp[i-1][0], -prices[i]);
// 第一次不持有, 原本就不持有dp[i-1][1] 或者是 原本持有后卖出dp[i-1][0] + prices[i]
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i]);
// 第二次持有, (只有当第一次持有后卖出才可以) 原本就持有dp[i-1][2] 或者 第一次持有后卖出后 dp[i][1] - prices[i]
dp[i][2] = max(dp[i-1][2], dp[i][1] - prices[i]);
// 第二次不持有, 要么原本就不持有, 或者持有后卖出
dp[i][3] = max(dp[i-1][3], dp[i][2] + prices[i]);
}
return dp[len-1][3];
}
};
2. 买卖股票的最佳时机 IV (最多完成k次交易)
- LeetCode链接
- dp[i][j] 第一次解答错误,是因为不持有后购买股票的金钱数与上一轮的前一次不购买相关,而不是与上一轮的同一次购买相关
int maxProfit(int k, vector<int>& prices) {
int len = prices.size();
//1. dp的大小: (len(2k))
vector<vector<int>> dp(len, vector<int>(2*k));
// 2. 初始化值, 在第一次可以买卖股票的时候 即 dp[0] 阶段买卖, j是偶数的时候为持有股票
for(int j=0; j<2*k; j+=2){
dp[0][j] = -prices[0];
}
for(int i=1; i<len; i++){
for(int j=0; j<2*k; j+=2){
// 第i轮 第j次 持有股票, 本来就持有dp[i-1][j], 本来不持有后买入dp[i-1][j+1]-prices[i]
// dp[i][j] = max(dp[i-1][j], dp[i-1][j+1]-prices[i]);
dp[i][j] = max(dp[i - 1][j], - prices[i] + (j == 0 ? 0 : dp[i-1][j-1]));
// 第i轮 第j次不持有股票, 本来不持有dp[i-1][j+1], 本来持有后卖出dp[i-1][j]+prices[i]
dp[i][j+1] = max(dp[i-1][j+1], dp[i-1][j] + prices[i]);
}
}
return dp[len-1][2*k-1];
}
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
int len = prices.size();
//1. dp的大小: (len(2k))
vector<vector<int>> dp(len, vector<int>(2*k+1));
// 2. 初始化值, 每个dp[i]的 k个不持有股票的状态都需要初始化
for(int j=1; j<2*k; j+=2){
dp[0][j] = -prices[0];
}
for(int i=1; i<len; i++){
for(int j=0; j<2*k; j+=2){
// 第i轮 第j次 持有股票, 本来就持有, 本来不持有后买入
dp[i][j+1] = max(dp[i-1][j+1], dp[i-1][j]-prices[i]);
// 第i轮 第j次不持有股票, 本来不持有, 本来持有后卖出
dp[i][j+2] = max(dp[i-1][j+2], dp[i-1][j+1] + prices[i]);
}
}
// for(int i=1; i<len; i++){
// for(int j=0; j<k; j+=2){
// // 第i轮 第j次 持有股票, 本来就持有, 本来不持有后买入
// dp[i][j] = max(dp[i-1][j], dp[i-1][j+1]-prices[i]);
// // 第i轮 第j次不持有股票, 本来不持有, 本来持有后卖出
// dp[i][j+1] = max(dp[i-1][j+1], dp[i][j] + prices[i]);
// }
// }
return dp[len-1][2*k];
}
int maxProfit1(int k, vector<int>& prices) {
int n = prices.size();
if (k >= n / 2) {
// 如果 k >= n/2,则相当于可以进行任意次交易
int maxProfit = 0;
for (int i = 1; i < n; i++) {
if (prices[i] > prices[i-1]) {
maxProfit += prices[i] - prices[i-1];
}
}
return maxProfit;
}
vector<vector<vector<int>>> dp(n, vector<vector<int>>(k+1, vector<int>(2, 0)));
for (int i = 0; i < n; i++) {
for (int j = 1; j <= k; j++) {
if (i == 0) {
dp[i][j][1] = -prices[i];
} else {
dp[i][j][0] = max(dp[i-1][j][0], dp[i-1][j][1]+prices[i]);
dp[i][j][1] = max(dp[i-1][j][1], dp[i-1][j-1][0]-prices[i]);
}
}
}
return dp[n-1][k][0];
}
};