第48天-DP-第九章 ● 300.最长递增子序列 ● 674. 最长连续递增序列 ● 718. 最长重复子数组

1.递增最长子序列

- LeetCode链接

  • 这里dp[i]的含义是nums[0]到nums[i-1] 在内的所有子序列的最长序列长度
  • 只要想到每次遍历完的dp[i]的结果 后边都可以用即可
    在这里插入图片描述
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        // 1.dp[i] 表示以 0-i 包括i nums[0-i] 在内的最长子序列的长度
        // 2.都初始化为1
        int len = nums.size();
        vector<int> dp(len, 1);
        int result = 1;

        // 3.位置i的最大子序列长度是 j从0到(i-1)各个位置的最长升序子序列的长度 + 1
        for(int i=1; i<len; i++){
            for(int j=0; j<i; j++){
                if(nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
            }
            result = max(dp[i], result);
        }

        return result;
    }
};

2. 最长连续递增序列

- LeetCode链接
在这里插入图片描述

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        // dp[i]代表了从 0-i 的nums序列中的最长连续子序列长度
        int len = nums.size();
        vector<int> dp(len, 1);
        int result =1;

        for(int i=1; i<len; i++){
            if(nums[i] > nums[i-1]){
                dp[i] = dp[i-1] + 1;
            }
            if(dp[i] > result) result = dp[i];
        }

        return result;
    }
};

3. 最长重复子数组

- LeetCode链接

  • 这里的 dp数据从 dp[1]开始记录, dp[i+1]记录的nums[i]的值
    在这里插入图片描述
class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        // dp数组 dp[i][j] 表示以nums1[i] 和 nums2[j] 结尾的公共长度
        // 因为两个数组可能没有公共值,因此初始化值为0
        vector<vector<int>> dp(nums1.size()+1, vector<int>(nums2.size()+1, 0));


        int result = 0;
        // 确定递推逻辑
        for(int i=1; i<=nums1.size(); i++){
            for(int j=1; j<=nums2.size(); j++){
                if(nums1[i-1] == nums2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }
                if(dp[i][j] > result) result = dp[i][j];
            }
        }

        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值