1. 最长公共子序列
- 注意这里的遍历 是从 i=1, j=1开始
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
// 718题的最长公共数组 要求的子元素序列是连续的, 这道题是不连续的
// 1. dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
// 2. 初始化都为0
vector<vector<int>> dp(text1.size()+1, vector<int>(text2.size()+1, 0));
// 初始化的时候大小设置为 text1.size()+1 和 text2.size()+1 是为了在遍历的时候, dp[i-1][j-1]在 i=0 j=0的时候好计算
// 3.确定递归函数
for(int i=1; i<=text1.size(); i++){
for(int j=1; j<=text2.size(); j++){
if(text1[i-1] == text2[j-1]){
dp[i][j] = max(dp[i][j], dp[i-1][j-1] + 1);
}else{
dp[i][j] = max(dp[i][j], max(dp[i-1][j], dp[i][j-1]));
}
}
}
return dp[text1.size()][text2.size()];
}
};
2. 不相交的线 (与最长公共子序列相同)
class Solution {
public:
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
int len1 = nums1.size(), len2 = nums2.size();
// 也是最长公共子序列的问题
vector<vector<int>> dp(len1 + 1, vector<int>(len2+1, 0));
for(int i=1; i<=len1; i++){
for(int j=1; j<=len2; j++){
if(nums1[i-1] == nums2[j-1]){
dp[i][j] = max(dp[i][j], dp[i-1][j-1]+1);
}else{
dp[i][j] = max(dp[i][j], max(dp[i-1][j], dp[i][j-1]));
}
}
}
return dp[len1][len2];
}
};
3. 最大子序和 (最大和的连续子数组)
dp方法
// 1. dp算法
int maxSubArray(vector<int>& nums) {
vector<int> dp(nums.size(), 0);
int result = nums[0];
dp[0] = nums[0];
for(int i=1; i<nums.size(); i++){
dp[i] = max(nums[i], dp[i-1]+nums[i]);
if(dp[i] > result) result = dp[i];
}
return result;
}
贪心算法
int maxSubArray(vector<int>& nums) {
int result = INT32_MIN; // 最小值
int count = 0;
// 贪心算法: 使用result记录当前遇到的最大值,当累加和count小于0的时候,直接忽略当前值,count置为0,重新开始累加
for(int i=0; i<nums.size(); i++){
count += nums[i];
if(count > result) result = count;
if(count <= 0) count = 0;
}
return result;
}
};