SLAM14讲阅读笔记(三)

本文探讨了几何代数在空间变换中的核心概念,包括反对称矩阵、旋转向量、旋转矩阵和四元数。介绍了如何从向量叉乘引出反对称矩阵,以及通过罗德里格斯公式实现旋转向量与旋转矩阵的转换。同时,阐述了四元数表示三维空间旋转的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

反对称矩阵

反对称矩阵是从向量叉乘中引出的
在这里插入图片描述
通过引入^符号,把a写成一个矩阵。任意一个向量都对应着唯一一个反对称矩阵,反之亦然。

欧式变换

通过旋转矩阵和平移矩阵完整的描述了欧式坐标变换,旋转矩阵是行列式为1的正交矩阵。

将旋转矩阵和平移矩阵写到一个四维矩阵中,这个矩阵T被称为变换矩阵。

旋转向量

旋转矩阵使用9个量来表示3个自由度,变换矩阵使用16个量来表示6个自由度,这种表示方法比较冗余。此外旋转矩阵具有一个约束条件(正交矩阵)在求解时会更困难。
旋转可以由旋转轴和旋转角来刻画,那么可以使用向量来表示旋转,向量的方向与旋转轴一致,大小等于旋转角。
旋转向量与旋转矩阵可以通过罗德里格斯公式转换。

四元数

由一个实部和三个虚部组成,
在这里插入图片描述
它可以表示三维空间中的任意一个旋转,并且没有奇异性。

四元数表示旋转的方法

对于一个用四元数表示的空间三维点p,经过旋转q之后得到p’,可以使用下面的公式表示:
在这里插入图片描述
q表示这个旋转
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值