反对称矩阵
反对称矩阵是从向量叉乘中引出的
通过引入^符号,把a写成一个矩阵。任意一个向量都对应着唯一一个反对称矩阵,反之亦然。
欧式变换
通过旋转矩阵和平移矩阵完整的描述了欧式坐标变换,旋转矩阵是行列式为1的正交矩阵。
将旋转矩阵和平移矩阵写到一个四维矩阵中,这个矩阵T被称为变换矩阵。
旋转向量
旋转矩阵使用9个量来表示3个自由度,变换矩阵使用16个量来表示6个自由度,这种表示方法比较冗余。此外旋转矩阵具有一个约束条件(正交矩阵)在求解时会更困难。
旋转可以由旋转轴和旋转角来刻画,那么可以使用向量来表示旋转,向量的方向与旋转轴一致,大小等于旋转角。
旋转向量与旋转矩阵可以通过罗德里格斯公式转换。
四元数
由一个实部和三个虚部组成,
它可以表示三维空间中的任意一个旋转,并且没有奇异性。
四元数表示旋转的方法
对于一个用四元数表示的空间三维点p,经过旋转q之后得到p’,可以使用下面的公式表示:
q表示这个旋转