(二)朴素贝叶斯分类器

(二)朴素贝叶斯分类器

(一)朴素贝叶斯与贝叶斯分类器基础知识进行拓展. 设输入空间是 n n n维的类别向量 X = x 1 , … , x n X={x_1,…,x_n} X=x1,,xn, 输出空间的类别有 K K K类: Y = c 1 , … , c K Y={c_1,…,c_K} Y=c1,,cK. X X X是输入空间 X X X上的随机变量, Y Y Y是输出空间 Y Y Y上的随机变量. 训练数据集 D D D ( x 1 , y 1 ) , … , ( x N , y N ) {(x_1,y_1 ),…,(x_N,y_N )} (x1,y1),,(xN,yN), y y y为标签.

贝叶斯分类器的输出问题是给定一系列输入 X = x 1 , … , x n X={x_1,…,x_n} X=x1,,xn, 算出这个输入属于各个类别的概率, 最大概率处就是这个输入的类别. 即需要算出所有的 P ( Y = c k │ X ) , k = 1 , … , K P(Y=c_k│X),k=1,…,K P(Y=ckX),k=1,,K.

由贝叶斯公式 P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) P(A|B)=P(A)\dfrac{P(B|A)}{P(B)} P(AB)=P(A)P(B)P(BA) , P ( C ∣ D ) = P ( C 1 ∣ A ) … P ( C m ∣ A ) P(C|D)=P(C_1 |A)…P(C_m |A) P(CD)=P(C1A)P(CmA), P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B)=∑_{i=1}^nP(A_i )P(B|A_i ) P(B)=i=1nP(Ai)P(BAi), 则有:
P ( Y = c k │ X ) = P ( Y = c k ) P ( X ∣ Y = c k ) P ( X ) = P ( Y = c k ) ( P ( x 1 │ Y = c k ) × … × P ( x n │ Y = c k ) P ( Y = c k ) P ( x 1 ∣ Y = c k ) + ⋯ + P ( Y = c k ) P ( x n ∣ Y = c k ) = P ( Y = c k ) ( ∏ j = 1 n P ( x j │ Y = c k ) ∑ k = 1 K P ( Y = c k ) ∏ j = 1 n P ( x j │ Y = c k ) \begin{aligned} P(Y=c_k│X) &= P(Y=c_k )\dfrac{P(X|Y=c_k )}{P(X)} \\ &= P(Y=c_k )\dfrac{(P(x_1│Y=c_k )×…×P(x_n│Y=c_k )}{P(Y=c_k )P(x_1 |Y=c_k )+⋯+P(Y=c_k )P(x_n |Y=c_k )} \\ &= P(Y=c_k )\dfrac{(∏_{j=1}^nP(x_j│Y=c_k ) }{∑_{k=1}^KP(Y=c_k ) ∏_{j=1}^nP(x_j│Y=c_k ) } \end{aligned} P(Y=ckX)=P(Y=ck)P(X)P(XY=ck)=P(Y=ck)P(Y=ck)P(x1Y=ck)++P(Y=ck)P(xnY=ck)(P(x1Y=ck)××P(xnY=ck)=P(Y=ck)k=1KP(Y=ck)j=1nP(xjY=ck)(j=1nP(xjY=ck)

至此, 每一个 P ( Y = c k │ X ) P(Y=c_k│X) P(Y=ckX)都算出来了, 这个输入 X X X的类别也就被分类了.
{值得注意的是, 朴素贝叶斯朴素就朴素在假设 x 1 , … , x n x_1,…,x_n x1,,xn相互独立, 即 P ( X ∣ Y = c k ) = P ( x 1 │ Y = c k ) × … × P ( x n │ Y = c k ) P(X|Y=c_k )=P(x_1│Y=c_k )×…×P(x_n│Y=c_k ) P(XY=ck)=P(x1Y=ck)××P(xnY=ck)}- 属性条件独立性假设.

因此, 就可以将贝叶斯分类器写为:
y = f ( X ) = a r g ⁡ m a x c k ⁡ P ( Y = c k ) ∏ j = 1 n P ( x j │ Y = c k ) ) ∑ k = 1 K P ( Y = c k ) ∏ j = 1 n P ( x j │ Y = c k ) y=f(X)=arg⁡max_{c_k}⁡\dfrac{P(Y=c_k )∏_{j=1}^nP(x_j│Y=c_k ) )}{∑_{k=1}^KP(Y=c_k ) ∏_{j=1}^nP(x_j│Y=c_k )} y=f(X)=argmaxckk=1KP(Y=ck)j=1nP(xjY=ck)P(Y=ck)j=1nP(xjY=ck))
其中, y y y是分类之后的标签, a r g ⁡ m a x c k ⁡ P ( Y = c k ) ∏ j = 1 n P ( x j │ Y = c k ) ) ∑ k = 1 K P ( Y = c k ) ∏ j = 1 n P ( x j │ Y = c k ) arg⁡max_{c_k}⁡\dfrac{P(Y=c_k )∏_{j=1}^nP(x_j│Y=c_k ) )}{∑_{k=1}^KP(Y=c_k ) ∏_{j=1}^nP(x_j│Y=c_k )} argmaxckk=1KP(Y=ck)j=1nP(xjY=ck)P(Y=ck)j=1nP(xjY=ck))表示从 P ( Y = c k ) ∏ j = 1 n P ( x j │ Y = c k ) ) ∑ k = 1 K P ( Y = c k ) ∏ j = 1 n P ( x j │ Y = c k ) \dfrac{P(Y=c_k )∏_{j=1}^nP(x_j│Y=c_k ) )}{∑_{k=1}^KP(Y=c_k ) ∏_{j=1}^nP(x_j│Y=c_k )} k=1KP(Y=ck)j=1nP(xjY=ck)P(Y=ck)j=1nP(xjY=ck))里面挑出使该式子最大的 c k c_k ck当作 y y y. 对于不同类别 Y = c k Y=c_k Y=ck来说上式的分母都一样就不用比较了, 所以:
y = f ( X ) = a r g ⁡ m a x c k P ( Y = c k ) ∏ j = 1 n P ( x j │ Y = c k ) y=f(X)=arg⁡max_{c_k}P(Y=c_k ) ∏_{j=1}^nP(x_j│Y=c_k ) y=f(X)=argmaxckP(Y=ck)j=1nP(xjY=ck)

对于离散属性而言, P ( x j ∣ Y = c k ) P(x_j |Y=c_k ) P(xjY=ck)可以用频数估计出来
对于连续属性而言, 可以假定 P ( x j ∣ Y = c k )   N ( μ c , j , σ c , j 2 ) P(x_j |Y=c_k )~N(μ_{c,j},σ_{c,j}^2) P(xjY=ck) N(μc,j,σc,j2), 其中 μ c , i μ_{c,i} μc,i σ c , i 2 σ_{c,i}^2 σc,i2分别取 c k c_k ck样本第 j j j个属性上取值的均值和方差.

P ( x j ∣ Y = c k ) = 1 2 π σ c , j e x p ⁡ ( − ( x j − μ c , j ) 2 2 σ c , j 2 ) P(x_j |Y=c_k )=\dfrac{1}{\sqrt{2π} σ_{c,j}} exp⁡(-\dfrac{(x_j-μ_{c,j} )^2}{2σ_{c,j}^2 }) P(xjY=ck)=2π σc,j1exp(2σc,j2(xjμc,j)2)

朴素贝叶斯假设 x 1 , … , x n x_1,…,x_n x1,,xn相互独立, 即 P ( X ∣ Y = c k ) = P ( x 1 │ Y = c k ) × … × P ( x n │ Y = c k ) P(X|Y=c_k )=P(x_1│Y=c_k )×…×P(x_n│Y=c_k ) P(XY=ck)=P(x1Y=ck)××P(xnY=ck), 但这样的简化会使估计并不准确, 准确的估计是(三)贝叶斯分类器.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值