本题要求实现一个函数,用下列公式求cos(x)的近似值,精确到最后一项的绝对值小于e:
cos(x)=x0/0!−x2/2!+x4/4!−x6/6!+⋯
函数接口定义:
double funcos( double e, double x );
其中用户传入的参数为误差上限e和自变量x;函数funcos应返回用给定公式计算出来、并且满足误差要求的cos(x)的近似值。输入输出均在双精度范围内。
裁判测试程序样例:
#include <stdio.h>
#include <math.h>
double funcos( double e, double x );
int main()
{
double e, x;
scanf("%lf %lf", &e, &x);
printf("cos(%.2f) = %.6f\n", x, funcos(e, x));
return 0;
}
输入样例:
0.01 -3.14
输出样例:
cos(-3.14) = -0.999899
double funcos( double e, double x )
{
double a,b=1,c,s=0,f=1,j=1,i=0;
do{
for(;j<=i;j++)
b*=j;
a=pow(x,i);
c=a/b*f;
i+=2;
s+=c;
f=-f;
}
while(fabs(c)>e);
return s;
}