volatile关键字

volatile 特性

  • 保障了线程之间的可见性,这其中可见性的保证是基于CPU的内存屏障指令,被JSR-133抽象为happens-before原则(先行发生原则)
  • 阻止编译时和运行时的指令重排,编译时JVM编译器遵循内存屏障的约束,运行时依靠CPU屏障指令来阻止重排。

如何保证的可见性?

在这里插入图片描述
为了保证效率,线程对共享变量的操作都是在工作内存中进行的,不能直接读写主内存的变量。为了提高效率,jvm采用性能较高的工作内存。
主内存中存储的是共享变量的本尊,工作内存中存储的是主内存中的副本。

另外不同线程之间也无法访问彼此的工作内存,变量值的传递只能通过主内存。

因此在多线程的情况下,我们对一个共享数据进行操作。
当线程1读取共享变量a,并修改a的同时,线程2对a进行读操作,读出来的结果可能是线程1修改前的结果,也可能是修改后的结果。

为避免这种情况,我们就需要用到volatile
volatile保证了其所修饰的变量对所有线程的可见性,即 当一个线程修改了变量的值,新的值会立刻同步到主内存当中。而当其他线程读取这个变量的时候,得到的就是最新的值。

为什么volatile关键字可以有可见性?

  • 因为happens-before。

在计算机科学中,先行发生原则是两个事件的结果之间的关系,如果一个事件发生在另一个事件之前,结果必须反映,即使这些事件实际上是乱序执行的(通常是优化程序流程)。

这里所谓的事件,实际上就是各种指令操作,比如读操作、写操作、初始化操作、锁操作等等。

先行发生原则作用于很多场景下,包括同步锁、线程启动、线程终止、volatile。我们这里只列举出volatile相关的规则:
对于一个volatile变量的写操作先行发生于后面对这个变量的读操作。

回到上述的代码例子,如果在静态变量s之前加上volatile修饰符:
volatile static int s = 0;
线程A执行如下代码:
s = 3;
这时候我们引入线程B,执行如下代码:
System.out.println(“s=” + s);
当线程A先执行的时候,把s = 3写入主内存的事件必定会先于读取s的事件。所以线程B的输出一定是s = 3。

什么是指令重排序

指令重排是指JVM在编译Java代码的时候,或者CPU在执行JVM字节码的时候,对现有的指令顺序进行重新排序。

指令重排的目的是为了在不改变程序执行结果的前提下,优化程序的运行效率。需要注意的是,这里所说的不改变执行结果,指的是不改变单线程下的程序执行结果。

什么是内存屏障?

内存屏障(Memory Barrier)是一种CPU指令,维基百科给出了如下定义:

内存屏障也称为内存栅栏或栅栏指令,是一种屏障指令,它使CPU或编译器对屏障指令之前和之后发出的内存操作执行一个排序约束。 这通常意味着在屏障之前发布的操作被保证在屏障之后发布的操作之前执行。

内存屏障共分为四种类型:

  • LoadLoad屏障:

抽象场景:Load1; LoadLoad; Load2

Load1 和 Load2 代表两条读取指令。在Load2要读取的数据被访问前,保证Load1要读取的数据被读取完毕。

  • StoreStore屏障:

抽象场景:Store1; StoreStore; Store2

Store1 和 Store2代表两条写入指令。在Store2写入执行前,保证Store1的写入操作对其它处理器可见

  • LoadStore屏障:

抽象场景:Load1; LoadStore; Store2

在Store2被写入前,保证Load1要读取的数据被读取完毕。

  • StoreLoad屏障:

抽象场景:Store1; StoreLoad; Load2

在Load2读取操作执行前,保证Store1的写入对所有处理器可见。StoreLoad屏障的开销是四种屏障中最大的。

volatile做了什么?

在一个变量被volatile修饰后,JVM会为我们做两件事:

  1. 在每个volatile写操作前插入StoreStore屏障,在写操作后插入StoreLoad屏障。

  2. 在每个volatile读操作前插入LoadLoad屏障,在读操作后插入LoadStore屏障。

在这里插入图片描述

内容概要:本文深入探讨了多种高级格兰杰因果检验方法,包括非线性格兰杰因果检验、分位数格兰杰因果检验、混频格兰杰因果检验以及频域因果检验。每种方法都有其独特之处,适用于不同类型的时间序列数据。非线性格兰杰因果检验分为非参数方法、双变量和多元检验,能够在不假设数据分布的情况下处理复杂的关系。分位数格兰杰因果检验则关注不同分位数下的因果关系,尤其适合经济数据的研究。混频格兰杰因果检验解决了不同频率数据之间的因果关系分析问题,而频域因果检验则专注于不同频率成分下的因果关系。文中还提供了具体的Python和R代码示例,帮助读者理解和应用这些方法。 适合人群:从事时间序列分析、经济学、金融学等领域研究的专业人士,尤其是对非线性因果关系感兴趣的学者和技术人员。 使用场景及目标:①研究复杂非线性时间序列数据中的因果关系;②分析不同分位数下的经济变量因果关系;③处理不同频率数据的因果关系;④识别特定频率成分下的因果关系。通过这些方法,研究人员可以获得更全面、细致的因果关系洞察。 阅读建议:由于涉及较多数学公式和编程代码,建议读者具备一定的统计学和编程基础,特别是对时间序列分析有一定了解。同时,建议结合具体案例进行实践操作,以便更好地掌握这些方法的实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值