一、Agent 概述
在大模型领域,Agent(智能体) 是一种结合了大模型(如大语言模型、多模态模型)与自主决策能力的智能系统,能够感知环境、规划任务、调用工具并执行行动以完成目标。以下是其核心概述:
1. 定义与核心特性
-
基本定义:
Agent 是一个以任务驱动、具备自主能力的智能体,其核心是大模型(如LLM),并集成任务规划、记忆管理、工具调用等功能模块。- 自主性:独立决策,无需持续外部干预(如自主规划任务、选择工具)。
- 交互性:与环境(如用户、数字工具、物理设备)或人类协作。
- 反应性:实时感知环境变化并做出响应(如处理用户输入或传感器数据)。
- 主动性:主动执行行动以达成目标(如自动驾驶系统规划路径)。
-
与大模型的关系:
大模型(如Transformer架构的LLM)作为Agent的“大脑”,提供语言理解、推理、多模态处理等能力。Agent通过整合大模型与外部工具,实现从感知到行动的闭环。
2. 技术架构
Agent 的典型架构包含以下核心模块:
- 控制中心(核心模型):
- 基于大模型(如LLM)的决策中枢,负责理解指令、推理逻辑、生成计划。
- 规划与任务分解:
- 将复杂任务拆解为子任务(如通过ReAct、CoT等提示工程方法)。
- 记忆管理:
- 短期记忆:存储当前对话或任务的上下文(如会话历史)。
- 长期记忆:通过向量数据库或知识库存储结构化信息(如用户偏好、专业知识)。
- 工具集成:
- 调用外部工具(如API、插件)扩展能力(例如:调用搜索引擎获取实时数据、调用OCR工具处理图像)。
- 行动执行:
- 将决策转化为具体操作(如生成文本、控制机器人、操作软件界面)。
示例架构:
class AIAgent:
def __init__(self, model):
self.model = model # 大模型(如LLM)
self.memory = Memory() # 记忆模块
self.tools = Tools() # 工具接口
def plan(self, task):
# 通过模型生成任务分解步骤
plan = self.model.generate_plan(task)
return plan
def act(self, action):
# 执行动作,可能调用工具或外部系统
if action == "search":
return self.tools.web_search(query)
elif action == "summarize":
return self.model.summarize(text)
3. 技术演进与趋势
-
发展历程:
- 早期阶段(20世纪50年代-2010年代):基于规则的简单Agent(如垃圾邮件过滤器)。
- 大模型推动(2017年后):LLM的出现赋予Agent强大的语言理解与多模态能力。
- 当前趋势(2023-2025):
- 端侧Agent:轻量化模型(如“小钢炮”MiniCPM)实现实时响应。
- 多模态感知:结合视觉、听觉输入,提升环境理解能力(如通过图像描述或频谱图分析音频)。
- 强化学习与持续学习:通过与环境交互优化策略,解决“灾难性遗忘”问题。
-
关键技术:
- 大模型:Transformer架构、多模态预训练。
- 工具链:API调用、RAG(检索增强生成)、强化学习(RLHF)。
- 推理优化:低延迟部署(如ServingKit推理套件)。
4. 典型应用场景
- 客户服务:
- 自动化客服Agent通过多轮对话解决用户问题,调用知识库或后台系统。
- 医疗健康:
- 提供个性化诊疗建议,结合医学文献与患者数据。
- 智能助手:
- 个人/企业助手&#