五、Agent+大模型:解锁AI新维度

一、Agent 概述

在大模型领域,Agent(智能体) 是一种结合了大模型(如大语言模型、多模态模型)与自主决策能力的智能系统,能够感知环境、规划任务、调用工具并执行行动以完成目标。以下是其核心概述:


1. 定义与核心特性

  • 基本定义
    Agent 是一个以任务驱动、具备自主能力的智能体,其核心是大模型(如LLM),并集成任务规划、记忆管理、工具调用等功能模块。

    • 自主性:独立决策,无需持续外部干预(如自主规划任务、选择工具)。
    • 交互性:与环境(如用户、数字工具、物理设备)或人类协作。
    • 反应性:实时感知环境变化并做出响应(如处理用户输入或传感器数据)。
    • 主动性:主动执行行动以达成目标(如自动驾驶系统规划路径)。
  • 与大模型的关系
    大模型(如Transformer架构的LLM)作为Agent的“大脑”,提供语言理解、推理、多模态处理等能力。Agent通过整合大模型与外部工具,实现从感知到行动的闭环。


2. 技术架构

Agent 的典型架构包含以下核心模块:

  1. 控制中心(核心模型)
    • 基于大模型(如LLM)的决策中枢,负责理解指令、推理逻辑、生成计划。
  2. 规划与任务分解
    • 将复杂任务拆解为子任务(如通过ReAct、CoT等提示工程方法)。
  3. 记忆管理
    • 短期记忆:存储当前对话或任务的上下文(如会话历史)。
    • 长期记忆:通过向量数据库或知识库存储结构化信息(如用户偏好、专业知识)。
  4. 工具集成
    • 调用外部工具(如API、插件)扩展能力(例如:调用搜索引擎获取实时数据、调用OCR工具处理图像)。
  5. 行动执行
    • 将决策转化为具体操作(如生成文本、控制机器人、操作软件界面)。

示例架构

class AIAgent:
    def __init__(self, model):
        self.model = model          # 大模型(如LLM)
        self.memory = Memory()      # 记忆模块
        self.tools = Tools()        # 工具接口
    
    def plan(self, task):
        # 通过模型生成任务分解步骤
        plan = self.model.generate_plan(task)
        return plan
    
    def act(self, action):
        # 执行动作,可能调用工具或外部系统
        if action == "search":
            return self.tools.web_search(query)
        elif action == "summarize":
            return self.model.summarize(text)

3. 技术演进与趋势

  • 发展历程

    • 早期阶段(20世纪50年代-2010年代):基于规则的简单Agent(如垃圾邮件过滤器)。
    • 大模型推动(2017年后):LLM的出现赋予Agent强大的语言理解与多模态能力。
    • 当前趋势(2023-2025):
      • 端侧Agent:轻量化模型(如“小钢炮”MiniCPM)实现实时响应。
      • 多模态感知:结合视觉、听觉输入,提升环境理解能力(如通过图像描述或频谱图分析音频)。
      • 强化学习与持续学习:通过与环境交互优化策略,解决“灾难性遗忘”问题。
  • 关键技术

    • 大模型:Transformer架构、多模态预训练。
    • 工具链:API调用、RAG(检索增强生成)、强化学习(RLHF)。
    • 推理优化:低延迟部署(如ServingKit推理套件)。

4. 典型应用场景

  1. 客户服务
    • 自动化客服Agent通过多轮对话解决用户问题,调用知识库或后台系统。
  2. 医疗健康
    • 提供个性化诊疗建议,结合医学文献与患者数据。
  3. 智能助手
    • 个人/企业助手&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耿雨飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值