Linux离线安装lsof

前言
除了可以很方便地使用Linux的软件包管理工具,如yum install lsof或rpm命令,也可以自己下载安装包然后编译安装。

一、下载安装包

https://dl.packetstormsecurity.net/UNIX/IDS/lsof/lsof_4.76.tar.gz
或https://download.csdn.net/download/songzehao/11826832

二、解压安装包

tar -zxvf lsof_4.76.tar.gz

三、解压源码包

cd lsof_4.76
tar -xvf lsof_4.76_src.tar

四、编译源码

cd lsof_4.76_src
./Configure linux
make

五、检验安装

编译完成后,可以看到已经有lsof命令了,

在这里插入图片描述

接着检验是否成功安装,在源码解压目录下尝试运行,

[root@BI-APPSERVER003 lsof_4.76_src]# ./lsof -i:8808
COMMAND   PID USER   FD   TYPE   DEVICE SIZE NODE NAME
java    14890 root   21u  IPv4 30273893       TCP *:8808 (LISTEN)

五、创建链接(快捷方式)

ln -s /root/songzehao/lsof_4.76/lsof_4.76_src/lsof /usr/bin

至此即可随处运行lsof了。

原文链接:https://blog.csdn.net/songzehao/article/details/101599042

要使用R复现这篇孟德尔随机化(Mendelian Randomization, MR)分析文章中的结果,可以按照以下步骤进行: ### 1. 安装和加载必要的包 首先,你需要安装并加载一些必要的R包,这些包用于处理GWAS数据和执行MR分析。 ```R install.packages("TwoSampleMR") library(TwoSampleMR) ``` ### 2. 下载和准备GWAS数据 你需要从论文中提到的数据源下载GWAS汇总统计数据,并将其准备好用于MR分析。这里以骨密度(BMD)和骨折为例。 #### 2.1 下载GWAS数据 你可以从以下网站下载GWAS数据: - **骨密度(BMD)**:[GEFOS](http://www.gefos.org/) -epidemiology/) - **精神疾病(MDs)**:[GWAS Catalog](https://www.ebi.ac.uk/gwas/downloads/summary-statistics) 假设你已经下载了这些数据并保存为文件。 #### 2.2 准备GWAS数据 将下载的GWAS数据读入R,并进行预处理。 ```R # 读取GWAS数据 bmd_data <- read.table("path/to/bmd_data.txt", header = TRUE) fracture_data <- read.table("path/to/fracture_data.txt", header = TRUE) schizophrenia_data <- read.table("path/to/schizophrenia_data.txt", header = TRUE) # 进行质量控制 bmd_data <- clump_data(bmd_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) fracture_data <- clump_data(fracture_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) schizophrenia_data <- clump_data(schizophrenia_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) ``` ### 3. 执行两样本MR分析 使用`TwoSampleMR`包中的函数来执行MR分析。 ```R # 获取遗传工具变量 exposure_data <- extract_instruments(schizophrenia_data) # 获取结局数据 outcome_bmd <- harmonise_data(exposure_data, bmd_data) outcome_fracture <- harmonise_data(exposure_data, fracture_data) # 执行MR分析 mr_result_bmd <- mr(outcome_bmd, method_list = c("ivw", "mr_egger_regression", "weighted_median")) mr_result_fracture <- mr(outcome_fracture, method_list = c("ivw", "mr_egger_regression", "weighted_median")) # 查看结果 print(mr_result_bmd) print(mr_result_fracture) ``` ### 4. 结果解释 输出的结果会显示不同方法下的MR估计值及其显著性水平。你可以通过查看`mr_result_bmd`和`mr_result_fracture`来解释结果。 ### 5. 敏感性分析 为了验证结果的稳健性,可以进行敏感性分析。 ```R # 检查异质性和多效性 heterogeneity_test <- mr_heterogeneity(outcome_bmd) pleiotropy_test <- mr_pleiotropy Egger(outcome_bmd) # 查看测试结果 print(heterogeneity_test) print(pleiotropy_test) ``` ### 6. 可视化结果 最后,可以使用`forest_plot`函数绘制森林图来可视化结果。 ```R # 绘制森林图 forest_plot(mr_result_bmd, method_list = c("ivw", "mr_egger_regression", "weighted_median")) forest_plot(mr_result_fracture, method_list = c("ivw", "mr_egger_regression", "weighted_median")) ``` ### 总结 以上步骤可以帮助你在R中复现这篇文章中的孟德尔随机化分析。确保你正确地下载和处理了所有所需的GWAS数据,并且在每一步都进行了适当的质量控制和数据校正。如果有任何问题或需要进一步的帮助,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值