AI如何实现测试用例智能生成(附实际案例)
1. AI生成测试用例的核心技术
(1)基于代码分析的生成
- 静态分析:解析代码控制流图(CFG)、数据依赖关系
- 动态分析:监控运行时行为(如输入-输出组合)
- 工具示例:
- Diffblue Cover(Java单元测试生成)
- Pynguin(Python单元测试生成)
(2)基于需求/用户行为的生成
- NLP解析需求文档:将自然语言需求转化为测试步骤
- 用户会话分析:从日志中提取高频操作路径
- 工具示例:
- Testim(记录用户操作生成E2E用例)
- Mabl(基于流量学习生成测试流)
(3)基于模型的学习
- 强化学习:通过奖励机制优化用例组合
- 遗传算法:进化生成更有效的测试输入
- 工具示例:
- EvoSuite(进化算法生成Java测试)
2. 具体实现流程(以电商购物车为例)
案例背景
需测试"用户添加商品到购物车后修改数量"的功能
步骤1:代码分析生成基础用例
// 被测代码片段(购物车逻辑)
public class ShoppingCart {
public void addItem(Item item, int quantity) {
if (quantity <= 0) throw new IllegalArgumentException();
cartItems.