题意:给一个n×n矩阵,mp[i][j]=1代表i到j之间有一条i指向j的有向边,同一个强联通分量之间可以随便加边,不同强连通分量之间只能有单向连边,问在现有的图的基础上,最多能加多少条边。
题解:tarjan缩点时记录每个连通分量包含的点的数量。ans一开始等于-tot,因为一定会减去现有的边。然后从第一个连通分量开始遍历,用pre记录连通分量点数量的前缀和,每一次,ans+=(num[i]-1)num[i](同一个连通分量之间的点可以随意连边),ans+=prenum[i](不同连通分量之间只能单向连边)。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
const int maxn = 2505;
int n,m;
int head[maxn],tot;
int dfn[maxn],low[maxn],Stack[maxn],belong[maxn],num[maxn],top,scc,cnt;
bool vis[maxn];
struct node
{
int to,next;
}a[maxn*maxn];
void add(int x,int y)
{
a[tot].to = y;
a[tot].next = head[x];
head[x] = tot++;
}
void tarjan(int u)
{
int v;
low[u] = dfn[u] = ++cnt;
vis[u] = true;
Stack[top++] = u;
for(int i=head[u]; i!=-1; i=a[i].next)
{
v = a[i].to;
if(!dfn[v])
{
tarjan(v);
low[u] = min(low[u],low[v]);
}
else
{
if(vis[v])
low[u] = min(low[u],low[v]);
}
}
if(low[u] == dfn[u])
{
scc++;
do
{
v = Stack[--top];
vis[v] = false;
belong[v] = scc;
num[scc]++;
}while(v != u);
}
}
void solve()
{
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(vis,0,sizeof(vis));
top = cnt = scc = 0;
for(int i=1; i<=n; i++)
{
if(!dfn[i])
tarjan(i);
}
}
int main()
{
scanf("%d",&n);
memset(head,-1,sizeof(head));
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
int k;
scanf("%d",&k);
if(k)
add(i,j);
}
}
solve();
int ans = -tot,pre = 0;
for(int i=1; i<=scc; i++)
{
ans += (num[i]-1)*num[i];
ans += pre*num[i];
pre += num[i];
}
printf("%d",ans);
}