代码随想录算法训练营 Day48 单调栈Ⅱ 接雨水Like

单调栈

题目

42. 接雨水 - 力扣(LeetCode)
单调栈解题,因为单调栈适合寻找一侧第一大的元素,我们使用递增栈实现,横向求解
栈内存放遍历过的元素(下标)
保持栈内数据单调递增(只需更小数据进入)
当数据大于栈口时找到了比当前元素右侧大的第一个元素,此时栈口的下一个元素时左侧大的元素
计算雨水高度:通过取两边柱子的最小值 - 底座高度实现
计算雨水宽度:左边下标 - 右边下标 - 1
一种特殊情况如果栈内若干个相同元素
此时计算的结果为 0(高度为 0)因此遇到重复元素弹出加入,建议弹出再加入减少计算

int trap(vector<int>& height) {
	// 定义栈 栈内存放元素下标
	std::stack<int> st;
	st.push(0);
	// 定义变量
	int sum = 0, h = 0, w = 0, mid = 0;
	// 单调栈遍历 采用单调递增栈
	for (int i = 1; i < height.size(); ++i) {
		if (height[i] < height[st.top()]) st.push(i);
		else if (height[i] == height[st.top()]) {
			st.pop();
			st.push(i); // 减少计算
		}
		else {
			while (!st.empty() && height[i] > height[st.top()]) {
				// 记录底柱
				mid = st.top();
				st.pop();
				if (!st.empty()) {
					// 记录左右最小柱子(左 st.top, 右 i)得到高和宽
					h = std::min(height[st.top()], height[i]) - height[mid];
					w = i - st.top() - 1;
					sum += h * w;
				}
			}
			st.push(i);
		}
	}
	return sum;
}

暴力双指针解题
纵向求解,只关注当前柱子的左高度与右高度,因此创建数组关注当前位置的左最大值与右最大值
只看右边,计算最大值数组,只看左边计算最大值数组
实际计算取最小元素,边界不存水 (i, n-1)

int trap(vector<int>& height) {
	// 数组存储
	int sum = 0;
	int n = height.size();
	std::vector<int> left(n, 0);
	left[0] = height[0];
	std::vector<int> right(n, 0);
	right[n-1] = height[n-1];
	// 寻找最大值 纵向计算只求当前雨水
	for (int i = 1; i < n-1; ++i) left[i] = std::max(left[i-1], height[i]);
	for (int i = n-2; i >= 0; --i) right[i] = std::max(right[i+1], height[i]);
	// 取最少容纳雨水
	for (int i = 1; i < n-1; ++i) sum += std::min(left[i], right[i]) - height[i];
	return sum;
}

终极双指针
TBC

84. 柱状图中最大的矩形 - 力扣(LeetCode)
使用单调栈求解柱子中左边比当前柱子矮的,右边比当前柱子矮的,求解最小值
使用单调递减单调栈实现,求左边比当前柱子小的 left,中间柱子 mid,右边比当前柱子小的 right
mid = st.top, st.pop() left = st.top right = i 单调递减栈存储比当前元素大的数据
w = right - left - 1
代码为接雨水的镜像版
特殊点
在元素中首尾添加一个 0,首的 0 用于处理输入第一次计算,尾的 0 用于处理最后一次计算

int largestRectangleArea(vector<int>& heights) {
	// 添加首尾 0 用于计算
	heights.insert(heights.begin(), 0);
	heights.push_back(0);
	// 定义单调栈 递减用于求小元素
	std::stack<int> st;
	st.push(0);
	// 定义元素
	int sum = 0, h = 0, w = 0, mid = 0, left = 0, right = 0;
	// 遍历
	for (int i = 1; i < heights.size(); ++i) {
		// 单调递减因此只能放更大数据
		if (heights[i] > heights[st.top()]) st.push(i);
		else if (heights[i] == heights[st.top()]) {
			st.pop();
			st.push(i);
		}
		else {
			while (!st.empty() && heights[i] < heights[st.top()]) {
				mid = st.top();
				st.pop();
				if (!st.empty()) {
					left = st.top();
					right = i;
					h = heights[mid]; // 找到就是最低点
					w = right - left - 1;
					sum = std::max(sum, h * w);
				}
			}
			st.push(i);
		}
	}
	return sum;
}

双指针实现
类似接雨水只不过要寻找最小元素
寻找最小元素过程中在 for 内使用 while 遍历找到左边的第一个最小元素记录下标
面积为当前元素的高度乘以这个元素坐标和右边最小元素的宽度
寻找面积最小值即可

int largestRectangleArea(vector<int>& heights) {
	// 存储左右下标
	int n = heights.size();
	vector<int> leftIdx(n, 0);
	vector<int> rightIdx(n, 0);

	// 记录当前元素左边最小值
	leftIdx[0] = -1;
	for (int i = 1; i < n; ++i) {
		int t = i - 1;
		while (t >= 0 && heights[t] >= heights[i]) t = leftIdx[t];
		leftIdx[i] = t;
	}

	// 右边最小值
	rightIdx[n-1] = n;
	for (int i = n-2; i >= 0; --i) {
		int t = i + 1;
		while (t <= n-1 && heights[t] >= heights[i]) t = rightIdx[t];
		rightIdx[i] = t;
	}

	// 计算面积最大值
	int res = 0;
	for (int i = 0; i < n; ++i) {
		int sum = heights[i] * (rightIdx[i] - leftIdx[i] - 1);
		res = max(res, sum);
	}
	return res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值