AcWing795 前缀和;AcWing796 子矩阵的和;AcWing797 差分;AcWing798 差分矩阵(前缀和、差分)

题目:AcWing795 前缀和;AcWing796 子矩阵的和;AcWing797 差分;AcWing798 差分矩阵


前言

一、题目陈述

二、解决思路

三、代码实现

1.前缀和

int a[N+10];
int s[N+10];
s[i]=s[i-1]+a[i];
while(m--) {
    scanf("%d%d",&l,&r);
    printf("%d\n",s[r]-s[l-1]);
}
return 0;

2.二维前缀和

int a[N][N],s[N][N];
for(int i = 1;i <= n; i++)
    for(int j = 1;j <= m;j++)
        s[i][j] = s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
while(q--) {
    scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
    int ans = s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1];
    printf("%d\n",ans);
}

3.差分

// a数组是b数组的前缀和 a是实际上的数的序列 b是对应的操作序列
// an=b1+b2+...+bn
// 初始状态a和b数组都是0 题目给了原数组后,先插入b数组,在得出a数组,
// 之后再按序修改区间的值
const int N=100010;
int a[N],b[N];
void insert(int l,int r,int c) {
	b[l] += c;
	b[r+1] -= c;
}
for(int i=1;i<=n;i++) {
	scanf("%d",&a[i]);
	insert(i,i,a[i]);
}
while(m--) {
	int l,r,c;
	scanf("%d%d%d",&l,&r,&c);
	insert(l,r,c);
}
a[0]=0;
for(int i=1;i<=n;i++) {
	a[i] = a[i-1] + b[i];
	printf("%d ",a[i]);
}

4.二维差分

int b[N][N],a[N][N];
void insert(int x1,int y1,int x2,int y2,int c) {
	b[x1][y1]+=c;
	b[x1][y2+1]-=c;
	b[x2+1][y1]-=c;
	b[x2+1][y2+1]+=c;
}
for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++) {
        scanf("%d",&a[i][j]);
        insert(i,j,i,j,a[i][j]);
    }
int x1,y1,x2,y2,c;
while(q--) {
    scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&c);
    insert(x1,y1,x2,y2,c);
}
for(int i=1;i<=n;i++) {
    for(int j=1;j<=m;j++) {
        a[i][j] = a[i-1][j]+a[i][j-1]-a[i-1][j-1]+b[i][j];
        printf("%d ",a[i][j]);
    }
}

总结

差分是前缀和的逆运算,可以类比于求导和积分运算。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
差分格式是一种数值方法,用于求解偏微分方程。在使用差分格式求解偏微分方程时,需要将偏微分方程离散化,得到一个数值求解问题,这个问题可以表示为一个矩阵方程。内点矩阵是这个矩阵方程中的一个矩阵,它对应于偏微分方程在内部计算点处的离散化。 内点矩阵的生成方法取决于所使用的差分格式。在有限差分方法中,通常使用中心差分公式来离散化偏微分方程。对于二维偏微分方程,中心差分公式可以表示为: $$\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=f(x,y)$$ $$\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{\Delta x^2}+\frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{\Delta y^2}=f_{i,j}$$ 其中 $u_{i,j}$ 表示在点 $(i,j)$ 处的数值解,$f_{i,j}$ 表示在点 $(i,j)$ 处的源项,$\Delta x$ 和 $\Delta y$ 分别表示 $x$ 和 $y$ 方向上的网格间距。将上式整理得到: $$- \frac{\Delta y^2}{\Delta x^2} u_{i-1,j} - \frac{\Delta x^2}{\Delta y^2} u_{i,j-1} + \left(2 \frac{\Delta x^2 + \Delta y^2}{\Delta x^2 \Delta y^2}\right) u_{i,j} - \frac{\Delta x^2}{\Delta y^2} u_{i,j+1} - \frac{\Delta y^2}{\Delta x^2} u_{i+1,j} = f_{i,j}$$ 这个方程中的系数矩阵就是内点矩阵,它的大小取决于离散化后内部计算点的个数。可以通过遍历内部计算点并计算系数矩阵中的元素来生成内点矩阵。注意,边界点和外部点的系数通常是已知的,需要将它们从矩阵方程中剔除,只保留内部点的系数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codertea

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值