【实践记录】mac m1 R 之数据操作:dataframe的合并、排序、导出、筛选

本文介绍了R语言中对数据进行操作的方法,包括使用rbind()函数合并数据框,利用dplyr包进行多列排序,使用write.csv()导出数据到CSV文件,并用subset()进行数据筛选。示例代码详细展示了具体步骤。
摘要由CSDN通过智能技术生成

数据操作:

1. 数据合并

# rbind() them
df3 <- rbind(df1,df2)
#rbind需要俩个df列数相同

更多请参考末尾的参考资源

2. 数据排序:DF按照某几列排序

#记得安装
#install.packages("dplyr")
library('dplyr')
df_2 <- arrange(df, row1,row2)
#将df按照row1,row2升序排列

3. 数据导出:写入CSV文件

# 指定x待写入数据,file生成的文件名
# row.names为false则不生成行名,指定sheet工作表名为Sheet1
# write.xlsx(df_actions, file = "actions.xlsx", row.names = FALSE, sheetName = "Sheet1")
## 很抱歉,写入Excel又报错。查询教程:数据太大,无法操作。所以愉快转入csv怀抱,很顺畅。

write.csv(df,"haha.csv")
newdf <- read.csv("haha.csv")

4. 数据筛选

 # 定义筛选范围,用于筛选符合条件的数据
 # 注意[[]]两层括号
id_range <- df_user[['Id']]

df2 <- subset(new_data,new_data[['id']] %in% id_range)

参考资源
1.多个sheet
2.数据排序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张鹏99

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值