Floyd算法

本文介绍了Floyd算法的基本思想和步骤。该算法通过三重循环寻找图中任意两点之间的最短路径。初始时,根据邻接矩阵设置最短路径,然后逐个使用节点作为中介点,检查并更新最短路径。文章还提供了一个具体的例题,展示如何应用该算法求解最短路径问题。
摘要由CSDN通过智能技术生成

基本思想

图G用邻接矩阵表示,通过一个三重循环,产生一个存储每个节点最短距离的矩阵;

任意节点i到j的最短路径两种可能:
1. 直接从i到j;
2. 从i经过若干个节点k到j。
map(i,j)表示节点i到j最短路径的距离,对于每一个节点k,检查map(i,k)+map(k,j)小于map(i,j),如果成立,map(i,j) = map(i,k)+map(k,j);遍历每个k,每次更新的是除第k行和第

List item

k列的数。

步骤

  1. 初始化map矩阵,map[i][j]为i到j的权值
    如果不相邻,则权值无限大
  2. 以顶点1(假设是第1个顶点)为中介点,若a[i][j] > a[i][1]+a[1][j],则设置a[i][j]=a[i][1]+a[1][j]。

例题

在这里插入图片描述

输入
4
0 1 2
0 2 6
0 3 4
1 2 3
2 0 7
2 3 1
3 0 5
3 2 12
-1 -

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值