思路:裸二次剩余,没啥好说的,需要注意的是,普通二次剩余的板子是针对奇素数的,对于mod==2的情况需要特判一下。
代码:
#include<stdlib.h>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
ll q_pow(ll a,ll b,ll p)
{
ll ans=1;
while(b)
{
if(b&1) ans=ans*a%p;
a=a*a%p;
b>>=1;
}
return ans;
}
ll Quadratic_residue(ll n,ll mod)
{
if(n==0)
return 0;
if(mod==2) return 1;
if(q_pow(n,(mod-1)>>1,mod)==mod-1) return -1;
ll b=(rand()<<14^rand())%mod;
while(q_pow(b,(mod-1)>>1,mod)!=mod-1)
b=(rand()<<14^rand())%mod;
ll s=mod-1,t=0,x,inv=q_pow(n,mod-2,mod),f=1;
while(s%2==0) s>>=1,t++,f<<=1;
t--,x=q_pow(n,(s+1)>>1,mod),f>>=1;
while(t)
{
f>>=1;
if(q_pow(inv*x%mod*x%mod,f,mod)!=1) x=x*q_pow(b,s,mod)%mod;
t--,s<<=1;
}
return min(x,mod-x);
}
int main()
{
int t;
cin>>t;
while(t--)
{
ll n,mod;
scanf("%lld%lld",&n,&mod);
ll ans=Quadratic_residue(n,mod);
if(ans==-1)
printf("No root\n");
else if(ans==mod-ans)
printf("%lld\n",ans);
else
printf("%lld %lld\n",ans,mod-ans);
}
return 0;
}