- 博客(490)
- 资源 (16)
- 问答 (1)
- 收藏
- 关注
原创 《YOLOv10改进实战专栏》专栏介绍 & 专栏目录《提供 YOLOv10-Magic 私域代码框架/本人7次贡献过YOLOv8官方项目》
《YOLOv10改进实战专栏》专栏介绍 & 专栏目录
2024-07-16 20:47:03
5447
4
原创 《YOLOv8改进实战专栏》专栏介绍 & 专栏目录 《提供 YOLOv8-Magic 私域代码框架/本人7次贡献过YOLOv8官方项目》
《YOLOv8改进实战专栏》🏅🏅🏅专栏介绍 & 专栏目录
2023-06-30 16:57:46
88557
156
原创 《YOLOv5/v7进阶实战专栏》专栏介绍 & 专栏目录 《提供 YOLOv5-Magic 私域代码框架》
yaml文件包含YOLOv5 YOLOv7 YOLOv7-tiny !🌟🌟🌟
2022-10-28 20:41:46
33683
45
原创 空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC
汇总一些SPP结构
2022-08-15 22:47:38
151678
340
原创 万字长文!YOLO算法模型yaml文件史上最详细解析与教程!小白也能看懂!掌握了这个就掌握了魔改YOLO的核心!
YOLO算法模型yaml文件史上最详细解析与教程!
2022-05-10 19:52:05
59135
188
原创 手把手带你 YOLOv5/v7 添加注意力机制(并附上30多种顶会Attention原理图)2024/2/5更新
YOLOv5/v7 添加注意力机制教程 2023/6/15更新🍀🍀🍀
2022-04-27 09:53:29
206717
499
原创 YAML2ModelGraph:一键生成 Ultralytics 模型结构图
的核心功能是读取 Ultralytics 模型的 YAML 文件,解析模型结构,并生成美观、易读的图形化表示。Backbone 与 Head 分组展示自动解析每层输入/输出通道Concat 输出通道自动计算竖版布局 + 直角边,适合论文或文档展示节点和子图美化,直观展示模型结构可扩展,支持自定义模块这个工具不仅提升了模型可视化的效率,还帮助研究者和开发者快速理解网络结构。
2025-11-06 13:30:48
991
原创 如何从代码角度理解 ultralytics 的 Yaml 文件机制?
YOLO框架通过YAML文件定义网络结构,关键由parse_model()函数实现。该函数读取YAML配置后自动构建网络,主要流程包括:提取模型基本参数(锚点、类别数等);遍历每层定义,解析输入来源、重复次数、模块类型和参数;动态创建PyTorch层并根据宽度因子调整网络大小;最终拼接成完整模型。不同类型模块(如Conv、CA、SE等)对参数处理规则不同,但都需确保输入输出通道正确衔接。这种机制使得通过简单修改YAML配置即可快速构建新网络,并支持灵活添加自定义模块。
2025-11-05 20:43:07
736
1
原创 为什么提示词工程有效?
摘要:Prompt Engineering通过优化输入提示词,激发大模型In-Context Learning(ICL)能力,提升模型表现。研究表明,ICL依赖于模型内部的贝叶斯推断、归纳头和函数向量头机制,使其能从上下文示例中学习任务模式。提示词的内容、格式和顺序都会显著影响输出效果。这一现象最早在GPT-2中被发现,GPT-3进一步强化了这种能力。Prompt Engineering的本质是引导模型激活最优的隐性知识路径。
2025-11-04 15:37:45
732
1
原创 为什么 Transformer 使用 LayerNorm 而不是 BatchNorm?
摘要:深度学习中的Normalization技术对模型性能至关重要,但CNN和Transformer分别偏好BatchNorm和LayerNorm。本文解析了两者的差异:BatchNorm通过批次统计稳定训练,适用于图像任务;而LayerNorm在样本内部进行标准化,更适合变长序列和动态batch的场景,因此成为Transformer架构的首选。关键区别在于标准化维度不同,BatchNorm跨样本比较特征,LayerNorm则在样本内处理特征。正确选择标准化方法能显著提升模型训练效果。
2025-11-03 20:56:13
930
原创 大模型入门实战 | 基于 YOLO 数据集微调 Qwen2.5-VL-3B-Instruct 的目标检测任务
基于 YOLO 数据集微调 Qwen2.5-VL-3B-Instruct 的目标检测任务
2025-08-26 20:49:54
2622
9
原创 大模型入门实战 | 单卡 3090 十分钟完成 Qwen2.5-7B 首次微调
单卡 3090 十分钟完成 Qwen2.5-7B 首次微调
2025-08-20 17:13:43
1872
10
原创 YOLO多模态改进系列 | 多模态融合的 SEResNeXtBottleneck 检测头
本教程详细讲解如何将YOLOFuse的与检测头相结合,实现目标检测模型的性能优化。相关代码可在GitHub获取:YOLOFuseResNet的一个模块。右图:复杂度大致相同的ResNeXt模块,基数()为32。图中的一层表示为(输入通道数,滤波器大小,输出通道数)。
2025-08-20 10:00:00
893
原创 【5】YOLO多模态融合 | 从 DEA 到 DEFA:动态卷积+交叉注意力的创新融合
本教程基线代码为开源项目请注意:并非在所有数据集上都能带来性能提升。DEFA 模块是我基于自身思路改进的——在您的数据集上是否有效,还需您自行实验验证,无法保证一定会有所增益。
2025-07-20 14:03:44
1858
原创 【4】DEYOLO 全面复现,将双增强跨模态目标检测网络 DEYOLO 融合到 YOLOFuse 框架
将 DEYOLO 融合到 YOLOFuse 框架
2025-06-24 17:05:04
2399
14
原创 【0】多模态目标检测前言
多模态目标检测是指利用来自不同传感器或数据源的多种类型信息来共同完成目标检测。每一种数据类型称为一个“模态”,例如可见光相机提供的彩色图像是一个模态,红外热成像是另一个模态,激光雷达点云或深度传感器提供的距离信息则属于不同的模态。与此相对,单模态目标检测只使用一种类型的数据进行检测。多模态检测的核心思想是信息互补:不同传感器各有优劣,它们提供的观测往往能从不同角度刻画同一目标。将这些信息融合起来,能弥补单一模态的不足,使检测更加全面准确。
2025-06-06 15:26:20
2227
14
原创 《RTDETR模型实验自动训练工具》 | 一次跑完所有改进,让每个人都实现改进RTDETR实验 !
《RTDETR模型实验自动训练工具》 | 一次跑完所有改进,让每个人都实现改进RTDETR实验 !
2025-04-22 16:16:15
551
原创 从 CNN 到 Swin:RT-DETR 搭载层次化视觉变换器有多强?
从 CNN 到 Swin:RT-DETR 搭载层次化视觉变换器有多强?
2025-04-22 15:17:28
592
3
原创 DeepSeekR1智能体---“模块缝合大师”:小白科研助手新选择
模块缝合大师”是一个基于深度学习PyTorch框架的智能体,专门为深度学习算法模块的缝合、创新与设计而生。无论你是需要一个全新的注意力机制,还是想对现有的卷积神经网络进行改进,这个智能体都能根据你的具体需求,提供专业的设计和优化建议。
2025-04-10 16:24:22
952
5
原创 ODVerse33:新的YOLO版本总是更好吗?从YOLOv5到v11的多领域基准测试
ODVerse33:新的YOLO版本总是更好吗?从YOLOv5到v11的多领域基准测试
2025-04-03 16:20:06
3151
2
原创 被 YOLO 版本号 PUA 的这三年:一个研究生的血泪反思
技术的本质是解决问题,而不是制造焦虑。愿你我都能找回那个凌晨三点跑通第一个YOLOv1时,眼里有光的自己。
2025-03-03 19:43:54
6627
13
原创 SCTNet: 单分支 CNN 与 Transformer 语义信息用于实时分割
SCTNet: 单分支 CNN 与 Transformer 语义信息用于实时分割
2025-03-03 00:25:40
1293
4
原创 即插即用篇 | YOLOv10 引入 YOLO12 最新模块,无痛涨点 | 让你的基于v10改进直接变成基于v12改进 !
让你的基于v10改进直接变成基于v12改进 !
2025-02-20 20:49:45
675
原创 即插即用篇 | YOLOv8 引入 YOLO12 最新模块,无痛涨点 | 让你的基于v8改进直接变成基于v12改进 !
让你的基于v8改进直接变成基于v12改进 !
2025-02-20 20:46:05
1882
6
原创 YOLOv10实现K折交叉验证教程:解决数据集样本稀少和类别不平衡的难题
YOLOv10实现K折交叉验证教程:解决数据集样本稀少和类别不平衡的难题
2025-01-21 17:31:50
516
原创 YOLOv11超参数调优教程! 使用Ray Tune进行高效的超参数调优!
YOLOv11超参数调优教程! 使用Ray Tune进行高效的超参数调优!
2025-01-21 17:22:58
1981
原创 YOLOv10超参数调优教程! 使用Ray Tune进行高效的超参数调优!
YOLOv10超参数调优教程! 使用Ray Tune进行高效的超参数调优!
2025-01-21 17:21:12
611
BEiT: BERT Pre-Training of Image Transformers PPT
2023-08-18
YOLOv5.pt 的 10 种方式热力图可视化结果展示
2023-07-12
YOLOv5 v6.1 检测任务权重文件
2023-07-02
YOLOv5 v7.0 检测任务权重文件
2023-07-02
Yolov5医护检测数据集144M 提供已训练好的权重文件及数据信息
2022-05-07
keras训练卷积神经网络模型总是中断,发生未知错误
2021-11-15
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅