即插即用篇 | YOLOv8 应用Slim-neck,更好的neck设计范式 | 《Slim-neck by GSConv:自动驾驶车辆检测器架构的更好设计范式》

本文介绍了如何在YOLOv8中应用Slim-neck结构,通过GSConv实现模型轻量化,提高计算效率,同时保持高准确性。Slim-neck通过精心设计的卷积模块减少了计算成本,提高了检测器的性价比。实验结果显示,改进后的模型在Tesla T4 GPU上以约100FPS的速度在SODA10M数据集上达到了70.9%的mAP0.5。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
目标检测是计算机视觉中一个重要的下游任务。对于车载边缘计算平台来说,很难实现实时检测的要求,因为庞大的模型会带来困难。而由大量深度可分离卷积层构建的轻量级模型不能达到足够的准确性。我们引入了一种新的轻量级卷积技术 GSConv,以减轻模型负担但保持准确性。GSConv 在模型准确性和速度之间实现了出色的平衡。此外,我们提供了一种设计范式 slim-neck,以实现更高的检测器计算成本效益。我们的方法在二十多组比较实验中表现出了鲁棒的有效性。特别地,我们改进后的检测器相比原始版本实现了最先进的结果(例如,在 Tesla T4 GPU 上以约 100FPS 的速度在 SODA10M 数据集上获得了 70.9% 的 mAP0.5)。

论文地址:https://arxiv.org/abs/2206.02424


模型结构

为什么要在Neck中使用GSConv?

为了加快预测的计算速度,CNN

评论 54
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值