主干网络篇 | YOLOv5/v7 更换主干网络为 VGG13 / VGG16 / VGG19 | 对比实验必备

该博客探讨了YOLOv5使用VGG13、VGG16和VGG19作为主干网络的效果。通过深度增加的卷积网络架构评估,作者发现更深的网络在大规模图像识别任务上取得显著提升。实验结果显示,这些模型在ImageNet挑战中表现出色,并且在其他数据集上也达到最先进的结果。博客提供了yolov5-vgg13、yolov5-vgg16和yolov5-vgg19的配置文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

在这里插入图片描述

论文地址:https://arxiv.org/pdf/1409.1556.pdf

在这项工作中,我们研究了卷积网络深度对其在大规模图像识别环境中准确性的影响。我们的主要贡献是对使用非常小(3×3)卷积滤波器的架构的不断增加深度的网络进行了彻底评估,这表明通过将深度推进到16-19个权重层,可以在先前的艺术配置上取得显著改进。这些发现是我们2014年ImageNet挑战赛提交的基础,在该挑战赛中,我们的团队分别在定位和分类跟踪中获得了第一和第二名。我们还展示了我们的表示如何很好地推广到其他数据集,在那里它们达到了最先进的结果。我们已经将我们表现最好的两个ConvNet模型公开可用,以促进进一步研究在计算机视觉中使用深度视觉表示。



<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值