特征融合篇 | 结合内容引导注意力 DEA-Net 思想 实现双主干特征融合新方法 | IEEE TIP 2024

本文提出了一种名为DEA-Net的深度去雾网络,其包含细节增强卷积(DEConv)和内容引导注意力(CGA)模块。DEConv整合先验信息,CGA关注特征中的有用信息,通过CGA的混合融合方案有效融合特征。DEA-Net在保持较低参数量的同时,实现了超过41 dB的PSNR指标,优于现有最佳方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇改进已集成到 YOLOv8-Magic 框架。

在这里插入图片描述

摘要—单幅图像去雾是一个具有挑战性的不适定问题,它从观察到的雾化图像中估计潜在的无雾图像。一些现有的基于深度学习的方法致力于通过增加卷积的深度或宽度来改善模型性能。卷积神经网络(CNN)结构的学习能力仍然未被充分探索。本文提出了一个细节增强的注意力块(DEAB),由细节增强卷积(DEConv)和内容引导注意力(CGA)组成,用于增强特征学习以提高去雾性能。具体而言,DEConv将先验信息集成到普通卷积层中,以增强表示和泛化能力。然后通过使用重参数化技术,DEConv等效地转换为一个普通的卷积,没有额外的参数和计算成本。通过为每个通道分配唯一的空间重要性映射(SIM),CGA可以关注特征中编码的更有用的信息。此外,提出了基于CGA的混合融合方案,以有效地融合特征并促进梯度流。通过结合上述组件,我们提出了我们的细节增强注意力网络(DEA-Net)来恢复高质量的无雾图像。大量实验结果表明,我们的DEA-Net的有效性,仅使用3.653 M参数,使PSNR指标提高到超过

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值