基数排序-------------java实现

一、基本思想

1.基数排序(Radix Sort)属于分配式排序(distribution sort),又称"桶子法"(Bucket Sort或Bin Sort),它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用。
2.基数排序属于稳定的排序,基数排序法的是效率高的稳定性排序法

3.基数排序(Radix Sort)是桶排序的扩展
4.将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。

  • 平均时间复杂度: O(n+k)
  • 最优情况: O(n+k)
  • 最坏情况: O(n²)
  • 空间复杂度: O(n+k)
  • 稳定性: 稳定

二、举例说明

现有一组数据:{43,3,535,738,14,21,0}

第一轮排序:

在这里插入图片描述
第1轮排序后:0,21,43,4,14,535,738

第二轮排序:
在这里插入图片描述
第二轮排序结果:0,4,14,21,535,738,43

第三轮排序:
在这里插入图片描述
第三轮排序结果:0,4,14,21,43,535,738

三、代码实现

package com.wml.sort;

import java.util.Arrays;

/**
 * @author MaoLin Wang
 * @date 2019/10/3012:53
 */
public class RadixSort {
    public static void main(String[] args) {
       
        int[] arr={53,3,542,748,14,21,0};
        radixSort(arr);

    }


    public static void radixSort(int[] arr){
        //求最大数的位数
        int max = arr[0];
        for (int i = 1;i < arr.length; i++){
            if (arr[i] >max){
                max = arr[i];
            }
        }
        //得到最大数的位数
        int maxLength = (max+"").length();

        //为防止数据溢出,应将列数设为数组长度
        int [][] bucket=new int[10][arr.length];
        //记录每个桶中实际存放了多少数据
        int[] bucketElementCounts=new int[10];


        /**
         * n代表位数,初始化为1,代表个位
         */
        for (int i=0 ,n = 1;i< maxLength;i++,n *=10){
            for (int j=0;j<arr.length;j++){
                //取出个位的值

                int value= arr[j] /n %10;
                //放入个位值为value的桶的第bucketElementCounts[value]个位置,刚开始bucketElementCounts[value]为0,每放入一个数据就+1
                bucket[value][bucketElementCounts[value]]=arr[j];
                bucketElementCounts[value]++;
            }

            int index = 0;//原始数组下边,初始为0
           // System.out.println(Arrays.toString(bucketElementCounts));
            //遍历每个桶,将桶中数据放回原来数组
            for (int k=0;k<bucketElementCounts.length;k++){
                //第k个桶 不等于0,即该桶有数据
                if (bucketElementCounts[k] !=0){
                    //遍历该桶数据,放入原数组
                    for (int m=0;m<bucketElementCounts[k];m++){
                        //取出元素放到arr
                        arr[index++] = bucket[k][m];
                    }
                }
                //第i+1轮处理后,需要将每个bucketElementCounts[k] = 0
                bucketElementCounts[k]=0;
            }
            System.out.println("第"+(i+1)+"轮结果"+ Arrays.toString(arr));
        }
    }


}

结果:
第1轮结果[0, 21, 542, 53, 3, 14, 748]
第2轮结果[0, 3, 14, 21, 542, 748, 53]
第3轮结果[0, 3, 14, 21, 53, 542, 748]

测试80w条数据耗时

   int[] arr =new int[800000];
        for (int i=0;i<800000;i++){
            arr[i]=(int)(Math.random()*800000);
        }

        long begintime=System.currentTimeMillis();
        System.out.println("开始时间"+begintime);

        radixSort(arr);

        long endtime=System.currentTimeMillis();
        System.out.println("结束时间"+endtime);
        System.out.println("用时:"+(endtime-begintime)+"ms");

结果:
开始时间1572416316975
结束时间1572416317084
用时:109ms

很明显比之前的归并、快速排序都快的多,但是其缺点也是很明显的,对于任何位数上的基数进行“装桶”操作时,都需要n+k个临时空间(k为桶数),非常耗费空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值