算法实验三 【跳马】分支限界
1043.跳马
时限:1000ms 内存限制:10000K 总时限:3000ms
描述
在国际象棋中,马的走法与中车象棋类似,即俗话说的“马走日”,下图所示即国际象棋中马(K)在一步能到达的格子(其中黑色的格子是能到达的位置)。
现有一200*200大小的国际象棋棋盘,棋盘中仅有一个马,给定马的当前位置(S)和目标位置(T),求出马最少需要多少跳才能从当前位置到达目标位置。
输入
本题包含多个测例。输入数据的第一行有一个整数N(1<=N<=1000),表示测例的个数,接下来的每一行有四个以空格分隔的整数,分别表示马当前位置及目标位置的横、纵坐标C(x,y)和G(x,y)。坐标由1开始。
输出
对于每个测例,在单独的一行内输出一个整数,即马从当前位置跳到目标位置最少的跳数。
输入样例
2
1 1 2 1
1 5 5 1
输出样例
3
4
#include<iostream>
#include<queue>
using namespace std;
struct node{
int x;
int y;
};
queue<node>q;
node start;
int n;
int sx,sy,tx,ty;
int maze[200][200];
int step[200][200];
int used[200][200];
int walk[8][2]={
-1,2,
-2,1,
-2,-1,
-1,-2,
1,2,
1,-2,
2,1,
2,-1,
};
int bfs();
bool istarget(node now,node next);
void update();
int main()
{
cin>>n;
while(n--)
{
cin>>sx>>sy>>tx>>ty;
update();
cout<<bfs()<<endl;
}
return 0;
}
void update()
{
while(!q.empty()) q.pop();
for(int i=0;i<200;i++)
{
for(int j=0;j<200;j++)
{
used[i][j]=step[i][j]=0;
}
}
sx=sx-1;
sy=sy-1;
tx=tx-1;
ty=ty-1;
start.x=sx;
start.y=sy;
used[start.x][start.y]=1;
q.push(start);
}
int bfs()
{
node now,next;
while(!q.empty())
{
now=q.front();
q.pop();
for(int i=0;i<8;i++)
{
next.x=now.x+walk[i][0];
next.y=now.y+walk[i][1];
if(istarget(now,next))
{
return step[next.x][next.y];
}
}
}
}
bool istarget(node now,node next)
{
if(next.x>=0&&next.x<200&&next.y>=0&&next.y<200)
{
if(!used[next.x][next.y])
{
used[next.x][next.y]=1;
step[next.x][next.y]=step[now.x][now.y]+1;
if(next.x==tx&&next.y==ty)
{
return true;
}
else q.push(next);
}
}
return false;
}
10.28
这题也是昨天写的,问题和电子老鼠那道题出的错误一样