算法实验三 【跳马】分支限界

算法实验三 【跳马】分支限界

1043.跳马

时限:1000ms 内存限制:10000K 总时限:3000ms

描述

在国际象棋中,马的走法与中车象棋类似,即俗话说的“马走日”,下图所示即国际象棋中马(K)在一步能到达的格子(其中黑色的格子是能到达的位置)。

现有一200*200大小的国际象棋棋盘,棋盘中仅有一个马,给定马的当前位置(S)和目标位置(T),求出马最少需要多少跳才能从当前位置到达目标位置。

输入

本题包含多个测例。输入数据的第一行有一个整数N(1<=N<=1000),表示测例的个数,接下来的每一行有四个以空格分隔的整数,分别表示马当前位置及目标位置的横、纵坐标C(x,y)和G(x,y)。坐标由1开始。

输出

对于每个测例,在单独的一行内输出一个整数,即马从当前位置跳到目标位置最少的跳数。

输入样例

2
1 1 2 1
1 5 5 1

输出样例

3
4

#include<iostream>
#include<queue>
using namespace std;
struct node{
	int x;
	int y;
};
queue<node>q;
node start;
int n;
int sx,sy,tx,ty;
int maze[200][200];
int step[200][200];
int used[200][200];
int walk[8][2]={
	-1,2,
	-2,1,
	-2,-1,
	-1,-2,
	1,2,
	1,-2,
	2,1,
	2,-1,
};
int bfs();
bool istarget(node now,node next);
void update();
int main()
{
	cin>>n;
	while(n--)
	{	
		cin>>sx>>sy>>tx>>ty;
        update();
	    cout<<bfs()<<endl;
	}
	return 0;
}
void update()
{
	while(!q.empty()) q.pop();
	for(int i=0;i<200;i++)
	{
		for(int j=0;j<200;j++)
		{
			used[i][j]=step[i][j]=0;
		}
	}
	sx=sx-1;
	sy=sy-1;
	tx=tx-1;
	ty=ty-1;
	start.x=sx;
	start.y=sy;
	used[start.x][start.y]=1;
	q.push(start);
}
int bfs()
{
	node now,next;
	while(!q.empty())
		{
		    now=q.front();
			q.pop();
			for(int i=0;i<8;i++)
			{
				next.x=now.x+walk[i][0];
				next.y=now.y+walk[i][1];
				if(istarget(now,next))
				{
					return step[next.x][next.y];
				}
			}
		}
}
	

bool istarget(node now,node next)
{
	if(next.x>=0&&next.x<200&&next.y>=0&&next.y<200)
	{
		if(!used[next.x][next.y])
		{
			used[next.x][next.y]=1;
			step[next.x][next.y]=step[now.x][now.y]+1;
			if(next.x==tx&&next.y==ty)
			{
				return true;
			}
			else q.push(next);
		}
	}
	return false;
}

10.28
这题也是昨天写的,问题和电子老鼠那道题出的错误一样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值