线性代数之矩阵

本文详细介绍了线性代数中的矩阵,包括矩阵的概念、运算,如加法、数乘和乘法,以及特殊矩阵如零矩阵、单位矩阵、对角矩阵。此外,还探讨了伴随矩阵、可逆矩阵的性质和求逆矩阵的方法。通过初等变换和初等矩阵,解释了矩阵等价的概念。
摘要由CSDN通过智能技术生成

线性代数之矩阵

矩阵的概念和运算

矩阵的概念

  1. 矩阵的概念
    m ∗ n m*n mn个数排成如下 m m m n n n列的表格,

    [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix} a11a21am1a12a22am2a1na2namn

    称为是一个 m ∗ n m*n mn的矩阵,当 m = n m=n m=n的时候,称为n阶矩阵或者n阶方阵

  2. 零矩阵
    当一个矩阵的所有元素都为0的时候称为零矩阵,记作0

    [ 0 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ 0 ] \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \\ \end{bmatrix} 000000000

  3. 同型矩阵
    两个矩阵行数和列数都相等称为同型矩阵

  4. 矩阵相等
    两个同型矩阵对应的元素都相等称为矩阵AB相等,记作A=B

矩阵的运算

  1. 相加
    两个同型矩阵可以相加
    A + B = [ a i j ] m ∗ n + [ b i j ] m ∗ n = [ a i j + b i j ] m ∗ n A+B=[a_{ij}]_{m*n}+[b_{ij}]_{m*n}=[a_{ij}+b_{ij}]_{m*n} A+B=[aij]mn+[bij]mn=[aij+bij]mn

  2. 数乘
    k k k是数,则有
    k A = k [ a i j ] m ∗ n = [ k a i j ] m ∗ n kA=k[a_{ij}]_{m*n}=[ka_{ij}]_{m*n} kA=k[aij]mn=[kaij]mn

  3. 乘法
    c i j = ∑ k = 1 s a i k b k j = a i 1 b 1 j + a i 2 b 2 j + . . . . + a i s b s j c_{ij}=\sum_{k=1}^s a_{ik}b_{kj}=a_{i1}b_{1j}+a_{i2}b_{2j}+....+a_{is}b_{sj} cij=k=1saikbkj=ai1b1j+ai2b2j+....+aisbsj

    注意点
    1. A B ≠ B A AB \ne BA AB=BA
    2. A B = 0 ⇏ A = 0 或 B = 0 AB=0 \nRightarrow A=0或B=0 AB=0A=0B=0
    3. A B = A C , A ≠ 0 ⇏ B = C AB=AC,A \ne 0 \nRightarrow B=C AB=AC,A=0B=C

  4. 关于 α β T \alpha\beta^T αβT β α T \beta\alpha^T βαT α T β \alpha^T\beta αTβ β T α \beta^T\alpha βTα

    注意 α α T \alpha\alpha^T ααT对称矩阵

  5. 转置
    m × n m×n m×n型矩阵 A = [ a i j ] m ∗ n A=[a_{ij}]_{m*n} A=[aij]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码上夏雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值