线性代数之矩阵
线性代数之矩阵
矩阵的概念和运算
矩阵的概念
-
矩阵的概念
m ∗ n m*n m∗n个数排成如下 m m m行 n n n列的表格,[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix} ⎣⎢⎢⎢⎡a11a21⋮am1a12a22⋮am2⋯⋯⋮⋯a1na2namn⎦⎥⎥⎥⎤
称为是一个 m ∗ n m*n m∗n的矩阵,当 m = n m=n m=n的时候,称为n阶矩阵或者n阶方阵。
-
零矩阵
当一个矩阵的所有元素都为0的时候称为零矩阵,记作0。[ 0 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ 0 ] \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \\ \end{bmatrix} ⎣⎢⎢⎢⎡00⋮000⋮0⋯⋯⋮⋯000⎦⎥⎥⎥⎤
-
同型矩阵
两个矩阵行数和列数都相等称为同型矩阵。 -
矩阵相等
两个同型矩阵对应的元素都相等称为矩阵AB相等,记作A=B。
矩阵的运算
-
相加
两个同型矩阵可以相加
A + B = [ a i j ] m ∗ n + [ b i j ] m ∗ n = [ a i j + b i j ] m ∗ n A+B=[a_{ij}]_{m*n}+[b_{ij}]_{m*n}=[a_{ij}+b_{ij}]_{m*n} A+B=[aij]m∗n+[bij]m∗n=[aij+bij]m∗n -
数乘
设 k k k是数,则有
k A = k [ a i j ] m ∗ n = [ k a i j ] m ∗ n kA=k[a_{ij}]_{m*n}=[ka_{ij}]_{m*n} kA=k[aij]m∗n=[kaij]m∗n -
乘法
c i j = ∑ k = 1 s a i k b k j = a i 1 b 1 j + a i 2 b 2 j + . . . . + a i s b s j c_{ij}=\sum_{k=1}^s a_{ik}b_{kj}=a_{i1}b_{1j}+a_{i2}b_{2j}+....+a_{is}b_{sj} cij=k=1∑saikbkj=ai1b1j+ai2b2j+....+aisbsj注意点
1. A B ≠ B A AB \ne BA AB=BA
2. A B = 0 ⇏ A = 0 或 B = 0 AB=0 \nRightarrow A=0或B=0 AB=0⇏A=0或B=0
3. A B = A C , A ≠ 0 ⇏ B = C AB=AC,A \ne 0 \nRightarrow B=C AB=AC,A=0⇏B=C -
关于 α β T \alpha\beta^T αβT, β α T \beta\alpha^T βαT, α T β \alpha^T\beta αTβ, β T α \beta^T\alpha βTα
注意 α α T \alpha\alpha^T ααT是对称矩阵
-
转置
将 m × n m×n m×n型矩阵 A = [ a i j ] m ∗ n A=[a_{ij}]_{m*n} A=[aij]