使用conda创建的python虚拟环境

1 安装anacoda

···

2 打开终端并创建conda环境

2.1 打开Anaconda Prompt终端

左下角Windows Start Menu -> Anaconda3 -> Anaconda Prompt启动控制台

2.2 查看已存在的虚拟环境

conda env list

2.3 创建新的conda环境

# 在命令行输入以下命令,创建名为paddle_env的环境
# 此处为加速下载,使用清华源
conda create --name paddle_env python=3.8 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/  # 这是一行命令

2.4 激活刚创建的conda环境,在命令行中输入以下命令:

# 激活paddle_env环境
conda activate paddle_env

2.5 查看当前python的位置

where python

3 安装程序运行所需库

3.1 使用pip命令在刚激活的环境中安装对应包(此处为演示包)

## 在命令行中输入以下命令
# 确认当前所用的pip是否是paddle_env环境下的pip
where pip

# 默认安装CPU版本,安装paddle时建议使用百度源
pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

若需要安装GPU版本,则请打开paddle官网选择适合的版本
paddle官网:https://www.paddlepaddle.org.cn/
由于安装GPU版本需要先配置好CUDA和cudnn,建议有一定基础后再安装GPU版本
安装完paddle后,继续在paddle_env环境中安装paddlehub:
# 在命令行中输入以下命令
pip install paddlehub -i https://mirror.baidu.com/pypi/simple

paddlehub的介绍文档:https://github.com/PaddlePaddle/PaddleHub/blob/release/v2.1/README_ch.md

4 安装paddlehub并下载模型

安装完paddlehub后,下载风格迁移模型:

# 在命令行中输入以下命令
hub install stylepro_artistic==1.0.1
模型的说明文档:https://www.paddlepaddle.org.cn/hubsearch?filter=en_category&value=%7B%22scenes%22%3A%5B%22GANs%22%5D%7D
### 如何使用 Conda 创建 Python 虚拟环境 创建 Python 虚拟环境是管理项目依赖项的重要方法之一。通过 `conda` 工具,可以轻松实现这一目标。 #### 基本命令结构 要创建一个新的虚拟环境,可使用以下基本命令: ```bash conda create --name <env_name> python=<version> ``` 其中 `<env_name>` 是自定义的环境名称,而 `<version>` 则指定所需的 Python 版本[^1]。 #### 示例命令 假设需要创建一个名为 `my_project_env` 的虚拟环境,并设置其 Python 版本为 3.9,则执行如下命令: ```bash conda create --name my_project_env python=3.9 ``` 如果希望创建一个基于最新稳定版 Python 的环境,可以直接省略版本号参数: ```bash conda create --name latest_python_env python ``` #### 激活与停用虚拟环境 一旦完成环境创建,可以通过以下命令激活它: ```bash conda activate <env_name> ``` 例如,对于上述示例中的 `my_project_env`,运行: ```bash conda activate my_project_env ``` 当不再需要当前活动环境时,可通过以下命令将其停用: ```bash conda deactivate ``` #### 查看已有的虚拟环境列表 为了确认新创建的环境是否存在或者查看已有环境列表,可以运行以下命令: ```bash conda info --envs ``` 这将显示所有可用的 Conda 环境及其路径[^2]。 #### 删除不需要的虚拟环境 若某个虚拟环境已经废弃或无用,可以删除该环境以释放磁盘空间。具体操作如下: ```bash conda remove --name <env_name> --all ``` #### 安装额外包到特定环境中 在激活所需环境之后,还可以利用 pip 或者 conda 来安装其他必要的库。比如,在活跃状态下的 `my_project_env` 中添加 NumPy 库: ```bash pip install numpy # 或者 conda install numpy ``` 以上就是关于如何借助 conda 构建并维护独立于系统的 Python 开发环境的相关指导[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

L-960

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值