Java 代码实现排序算法

1、直接插入排序

经常碰到这样一类排序问题:把新的数据插入到已经排好的数据列中。

  1. 将第一个数和第二个数排序,然后构成一个有序序列
  2. 将第三个数插入进去,构成一个新的有序序列。
  3. 对第四个数、第五个数……直到最后一个数,重复第二步。
    在这里插入图片描述

如何写写成代码:

 1. 首先设定插入次数,即循环次数,for(int i=1;i<length;i++)1个数的那次不用插入。
 2. 设定插入数和得到已经排好序列的最后一个数的位数。insertNum和j=i-13. 从最后一个数开始向前循环,如果插入数小于当前数,就将当前数向后移动一位。
 4. 将当前数放置到空着的位置,即j+1

代码实现如下:

public void insertSort(int[] a){
        int length=a.length;//数组长度,将这个提取出来是为了提高速度。
        int insertNum;//要插入的数
        for(int i=1;i<length;i++){//插入的次数
            insertNum=a[i];//要插入的数
            int j=i-1;//已经排序好的序列元素个数
            while(j>=0&&a[j]>insertNum){//序列从后到前循环,将大于insertNum的数向后移动一格
                a[j+1]=a[j];//元素移动一格
                j--;
            }
            a[j+1]=insertNum;//将需要插入的数放在要插入的位置。
        }
    }

2、希尔排序

对于直接插入排序问题,数据量巨大时。

  1. 将数的个数设为n,取奇数k=n/2,将下标差值为k的书分为一组,构成有序序列。
  2. 再取k=k/2 ,将下标差值为k的书分为一组,构成有序序列。
  3. 重复第二步,直到k=1执行简单插入排序。
    在这里插入图片描述

如何写成代码:

 1. 首先确定分的组数。
 2. 然后对组中元素进行插入排序。
 3. 然后将length/2,重复1,2步,直到length=0为止。

代码实现如下:

public  void sheelSort(int[] a){
        int d  = a.length;
        while (d!=0) {
            d=d/2;
            for (int x = 0; x < d; x++) {//分的组数
                for (int i = x + d; i < a.length; i += d) {//组中的元素,从第二个数开始
                    int j = i - d;//j为有序序列最后一位的位数
                    int temp = a[i];//要插入的元素
                    for (; j >= 0 && temp < a[j]; j -= d) {//从后往前遍历。
                        a[j + d] = a[j];//向后移动d位
                    }
                    a[j + d] = temp;
                }
            }
        }
    }

3、简单选择排序

常用于取序列中最大最小的几个数时。

(如果每次比较都交换,那么就是交换排序;如果每次比较完一个循环再交换,就是简单选择排序。)

  1. 遍历整个序列,将最小的数放在最前面。
  2. 遍历剩下的序列,将最小的数放在最前面。
  3. 重复第二步,直到只剩下一个数。
    在这里插入图片描述

如何写成代码:

 1. 首先确定循环次数,并且记住当前数字和当前位置。
 2. 将当前位置后面所有的数与当前数字进行对比,小数赋值给key,并记住小数的位置。
 3. 比对完成后,将最小的值与第一个数的值交换。
 4. 重复23步。

代码实现如下:

public void selectSort(int[] a) {
        int length = a.length;
        for (int i = 0; i < length; i++) {//循环次数
            int key = a[i];
            int position=i;
            for (int j = i + 1; j < length; j++) {//选出最小的值和位置
                if (a[j] < key) {
                    key = a[j];
                    position = j;
                }
            }
            a[position]=a[i];//交换位置
            a[i]=key;
        }
    }

4、堆排序

对简单选择排序的优化。

  1. 将序列构建成大顶堆。
  2. 将根节点与最后一个节点交换,然后断开最后一个节点。
  3. 重复第一、二步,直到所有节点断开。

在这里插入图片描述

代码实现如下:

public  void heapSort(int[] a){
        System.out.println("开始排序");
        int arrayLength=a.length;
        //循环建堆
        for(int i=0;i<arrayLength-1;i++){
            //建堆

            buildMaxHeap(a,arrayLength-1-i);
            //交换堆顶和最后一个元素
            swap(a,0,arrayLength-1-i);
            System.out.println(Arrays.toString(a));
        }
    }
    private  void swap(int[] data, int i, int j) {
        // TODO Auto-generated method stub
        int tmp=data[i];
        data[i]=data[j];
        data[j]=tmp;
    }
    //对data数组从0到lastIndex建大顶堆
    private void buildMaxHeap(int[] data, int lastIndex) {
        // TODO Auto-generated method stub
        //从lastIndex处节点(最后一个节点)的父节点开始
        for(int i=(lastIndex-1)/2;i>=0;i--){
            //k保存正在判断的节点
            int k=i;
            //如果当前k节点的子节点存在
            while(k*2+1<=lastIndex){
                //k节点的左子节点的索引
                int biggerIndex=2*k+1;
                //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
                if(biggerIndex<lastIndex){
                    //若果右子节点的值较大
                    if(data[biggerIndex]<data[biggerIndex+1]){
                        //biggerIndex总是记录较大子节点的索引
                        biggerIndex++;
                    }
                }
                //如果k节点的值小于其较大的子节点的值
                if(data[k]<data[biggerIndex]){
                    //交换他们
                    swap(data,k,biggerIndex);
                    //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
                    k=biggerIndex;
                }else{
                    break;
                }
            }
        }
    }

5、冒泡排序

一般不用。

  1. 将序列中所有元素两两比较,将最大的放在最后面。
  2. 将剩余序列中所有元素两两比较,将最大的放在最后面。
  3. 重复第二步,直到只剩下一个数。

在这里插入图片描述

如何写成代码:

 1. 设置循环次数。
 2. 设置开始比较的位数,和结束的位数。
 3. 两两比较,将最小的放到前面去。
 4. 重复23步,直到循环次数完毕。

代码实现如下:

public void bubbleSort(int[] a){
        int length=a.length;
        int temp;
        for(int i=0;i<a.length;i++){
            for(int j=0;j<a.length-i-1;j++){
                if(a[j]>a[j+1]){
                    temp=a[j];
                    a[j]=a[j+1];
                    a[j+1]=temp;
                }
            }
        }
    }

6、快速排序

要求时间最快时。

  1. 选择第一个数为p,小于p的数放在左边,大于p的数放在右边。
  2. 递归的将p左边和右边的数都按照第一步进行,直到不能递归。
    在这里插入图片描述

代码实现如下:

public static void quickSort(int[] numbers, int start, int end) {
    if (start < end) {
        int base = numbers[start]; // 选定的基准值(第一个数值作为基准值)
        int temp; // 记录临时中间值
        int i = start, j = end;
        do {
            while ((numbers[i] < base) && (i < end))
                i++;
            while ((numbers[j] > base) && (j > start))
                j--;
            if (i <= j) {
                temp = numbers[i];
                numbers[i] = numbers[j];
                numbers[j] = temp;
                i++;
                j--;
            }
        } while (i <= j);
        if (start < j)
            quickSort(numbers, start, j);
        if (end > i)
            quickSort(numbers, i, end);
    }
}

7、归并排序

速度仅次于快排,内存少的时候使用,可以进行并行计算的时候使用。

  1. 选择相邻两个数组成一个有序序列。
  2. 选择相邻的两个有序序列组成一个有序序列。
  3. 重复第二步,直到全部组成一个有序序列。
    在这里插入图片描述

代码实现如下:

public static void mergeSort(int[] numbers, int left, int right) {
    int t = 1;// 每组元素个数
    int size = right - left + 1;
    while (t < size) {
        int s = t;// 本次循环每组元素个数
        t = 2 * s;
        int i = left;
        while (i + (t - 1) < size) {
            merge(numbers, i, i + (s - 1), i + (t - 1));
            i += t;
        }
        if (i + (s - 1) < right)
            merge(numbers, i, i + (s - 1), right);
    }
}
private static void merge(int[] data, int p, int q, int r) {
    int[] B = new int[data.length];
    int s = p;
    int t = q + 1;
    int k = p;
    while (s <= q && t <= r) {
        if (data[s] <= data[t]) {
            B[k] = data[s];
            s++;
        } else {
            B[k] = data[t];
            t++;
        }
        k++;
    }
    if (s == q + 1)
        B[k++] = data[t++];
    else  
        B[k++] = data[s++];
    for (int i = p; i <= r; i++)
        data[i] = B[i];
}

8、基数排序

用于大量数,很长的数进行排序时。

  1. 将所有的数的个位数取出,按照个位数进行排序,构成一个序列。
  2. 将新构成的所有的数的十位数取出,按照十位数进行排序,构成一个序列。
    在这里插入图片描述

代码实现如下:

public void sort(int[] array) {
        //首先确定排序的趟数;
        int max = array[0];
        for (int i = 1; i < array.length; i++) {
            if (array[i] > max) {
                max = array[i];
            }
        }
        int time = 0;
        //判断位数;
        while (max > 0) {
            max /= 10;
            time++;
        }
        //建立10个队列;
        List<ArrayList> queue = new ArrayList<ArrayList>();
        for (int i = 0; i < 10; i++) {
            ArrayList<Integer> queue1 = new ArrayList<Integer>();
            queue.add(queue1);
        }
        //进行time次分配和收集;
        for (int i = 0; i < time; i++) {
            //分配数组元素;
            for (int j = 0; j < array.length; j++) {
                //得到数字的第time+1位数;
                int x = array[j] % (int) Math.pow(10, i + 1) / (int) Math.pow(10, i);
                ArrayList<Integer> queue2 = queue.get(x);
                queue2.add(array[j]);
                queue.set(x, queue2);
            }
            int count = 0;//元素计数器;
            //收集队列元素;
            for (int k = 0; k < 10; k++) {
                while (queue.get(k).size() > 0) {
                    ArrayList<Integer> queue3 = queue.get(k);
                    array[count] = queue3.get(0);
                    queue3.remove(0);
                    count++;
                }
            }
        }
    }
选择排序算法准则: 每种排序算法都各有优缺点。因此,在实用时需根据不同情况适当选用,甚至可以将多种方法结合起来使用。 选择排序算法的依据 影响排序的因素有很多,平均时间复杂度低的算法并不一定就是最优的。相反,有时平均时间复杂度高的算法可能更适合某些特殊情况。同时,选择算法时还得考虑它的可读性,以利于软件的维护。一般而言,需要考虑的因素有以下四点: 1.待排序的记录数目n的大小; 2.记录本身数据量的大小,也就是记录中除关键字外的其他信息量的大小; 3.关键字的结构及其分布情况; 4.对排序稳定性的要求。 设待排序元素的个数为n. 1)当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短; 堆排序 : 如果内存空间允许且要求稳定性的, 归并排序:它有一定数量的数据移动,所以我们可能过与插入排序组合,先获得一定长度的序列,然后再合并,在效率上将有所提高。 2) 当n较大,内存空间允许,且要求稳定性 =》归并排序 3)当n较小,可采用直接插入或直接选择排序。 直接插入排序:当元素分布有序,直接插入排序将大大减少比较次数和移动记录的次数。 直接选择排序 :元素分布有序,如果不要求稳定性,选择直接选择排序 5)一般不使用或不直接使用传统的冒泡排序。 6)基数排序 它是一种稳定的排序算法,但有一定的局限性:   1、关键字可分解。   2、记录的关键字位数较少,如果密集更好   3、如果是数字时,最好是无符号的,否则将增加相应的映射复杂度,可先将其正负分开排序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值