python图像读取
用于记录
python图像读取的方式主要是opencv,PIL。
opencv读取
opencv在图像处理方面,感觉应该是用的最广泛的包了。
import cv2
#读取照片,英文路径
img=cv2.imread("data/00000.png")
#默认类型是ndarray,也就是numpy可以直接操作
print(img.dtype)
h,w,c=img.shape
##显示图片
# cv2.imshow("window",img)
# cv2.waitKey(0)
#保存图片,英文路径
cv2.imwrite("data/00000out.png",img)
输出
uint8
False
读取灰度图或4通道图
# cv2.imread存在标志位
# cv2.IMREAD_COLOR,cv2.IMREAD_GRAYSCALE,cv2.IMREAD_UNCHANGED
print(cv2.IMREAD_COLOR,cv2.IMREAD_GRAYSCALE,cv2.IMREAD_UNCHANGED)
#彩色图
img=cv2.imread("data/00000.png",flags=1)
#灰度图
img=cv2.imread("data/00000.png",flags=0)
#包含alpha通道
img=cv2.imread("data/00000.png",flags=-1) #如果是rgb那还是3通道
输出
1 0 -1
opencv读取中文路径正确方式
import cv2
import numpy as np
#采用 cv2.imdecode 读取图片
#错误方式
img1=cv2.imread("data/中文路径/00000.png")
print("1",img1==None)
#正确方式
array = np.fromfile("data/中文路径/00000.png",dtype=np.uint8)
img = cv2.imdecode(array,flags=1)
print("2",img==None)
## 采用 cv2.imencode 保存图片
#错误方式
print(cv2.imwrite("data/中文路径/00000out.png",img))
#正确方式
arr = cv2.imencode(".png",img)
arr[1].tofile("data/中文路径/00000out.png")
输出
1 True
2 [[[False False False]
[False False False]
[False False False]
....
False
PIL
PIL在深度学习数据增强中用到了不少,也是一个经常使用到的包
from PIL import Image
import numpy as np
#读取图片,中英文路径都行
im = Image.open("data/中文路径/00000.png")
print(im) #不能numpy直接处理,不是numpy数组
#转成numpy
im_array = np.array(im)
#从numpy转回
Image.fromarray(im_array.astype('uint8')).convert('RGB')
#保存图片 ,中英文路径都行
im.save("data/中文路径/00000out.png")
输出
<PIL.PngImagePlugin.PngImageFile image mode=RGB size=512x512 at 0x22278E4A580>