今天主要学习了 pandas 的索引
索引和选择
对应的操作,语法和返回结果
选择一列 -> df[col] -> Series
根据行标签选择一行 -> df.loc[label] -> Series
根据行位置选择一行 -> df.iloc[label] -> Series
选择多行 -> df[5:10] -> DataFrame
根据布尔向量选择多行 -> df[bool_vector] -> DataFrame
需巩固的截图:
apply: 将数据按行或列进行计算
applymap: 将数据按元素为进行计算
排名
还原index
数据聚合
分组运算,先根据一定规则拆分后的数据,然后对数据进行聚合运算,如前面见到的 mean(), sum() 等就是聚合的例子。聚合时,拆分后的第一个索引指定的数据都会依次传给聚合函数进行运算。最后再把运算结果合并起来,生成最终结果。
聚合函数除了内置的 sum(), min(), max(), mean() 等等之外,还可以自定义聚合函数。自定义聚合函数时,使用 agg() 或 aggregate() 函数。
内置聚合函数