基于任务判别成分分析的TDCA算法

1、TDCA算法简介

脑-机接口(Brain-Computer Interface, BCI)是一项颠覆式的创新技术,能够为大脑与外部环境之间提供了一种无需依赖周围神经的直接通讯通路,能够替代、修复、增强、补充或改善正常的神经系统功能。基于SSVEP的BCI系统现已被广泛使用,因为SSVEP不但反映了人类大脑视觉通路的自然响应,并且具有可分类目标数多、识别时间短、信息传输率高、用户训练时间较短等优点。

经过研究者们的多年艰辛探索,加州大学圣地亚哥分校脑机接口研究课题组Nakanish博士借鉴近红外信号分析算法的成果,于2017年提出了任务判别分析算法(Task-Related Component Analysis, TRCA)与集成式任务判别分析(Ensemble-TRCA)算法,将高性能SSVEP-BCI系统所需的识别时间窗缩减到1秒以内,开创了SSVEP-BCI研究的新纪元1清华大学高晓榕教授课题组Liu博士等人于2021年提出的任务判别分析算法(Task-Discriminant Component Analysis, TDCA),在湿电极设备Neuroscan采集的40分类的数据集上35个参与实验的受试者取得了平均244.34±10.84bpm的信息传输速率(Information Transfer Rate, ITR),达到了被试内分类场景下BCI研究社区的最高水准,如下图1所示。这个结果意味着BCI系统仅分析被试0.5s的SSVEP信号时便可以输出平均准确率为85.00±2.70%的输出指令,分析1.0s的SSVEP信号时可输出平均准确率为96.80±1.00%的输出指令。此外,TDCA算法在短时间窗、少量通道、少量校准数据下性能的鲁棒性也为SSVEP-BCI的研究落地也带来极大的希望2

在这里插入图片描述

2、TDCA算法原理与推导

基于Ensemble TRCA的Ensemble思想,我们知道SSVEP源信号传递至头表记录的各个电极通道的信号混合系数使用的频率范围是一致的,因此不同类别的刺激在SSVEP-BCI中具有共同的空间模式或空间过滤器1然而,由于不同刺激的空间模式相似,从而不需要从每个刺激中学习空间滤波器。因此,与TRCA算法中为每个类优化空间滤波器的策略相反,TDCA算法采用判别成分分析来寻找所有类的时空滤波器。

在这里插入图片描述

2.1 脑电数据时空延拓增强

具体而言,在单独校准的SSVEP-BCI中,考虑 X i ∈ R N c h × N p X^{i}\in \mathbb{R}^{N_{ch}\times N_p} XiRNch×Np是第 i i i次训练试验, i = 1 , 2 , . . . , N t i=1, 2, ..., N_t i=1,2,...,Nt,其中 N t N_t Nt 是试验次数, N p N_p Np 是采样点数量。TDCA算法利用SSVEP信号近余弦的周期性特性3,首先采用时-空延拓方法提升脑电数据维度,获得增强的SSVEP数据以提升数据鲁棒性。
X ~ = [ X T , X 1 T , … , X l T ] T (1) \tilde{X} = \begin{bmatrix} X^T, X_1^T, \dots, X_l^T \end{bmatrix}^T \tag{1} X~=[XT,X1T,,XlT]T(1)

其中, X ~ ∈ R ( l + 1 ) N c h × N p \tilde{X} \in \mathbb{R}^{(l+1)N_{ch} \times N_p} X~R(l+1)Nch×Np为增强后的 EEG 试次数据。 X l ∈ R N c h × N p X_l \in \mathbb{R}^{N_{ch} \times N_p} XlRNch×Np表示延迟 l l l 个点的 EEG 试次数据, 即从时间点(数据点) l + 1 l+1 l+1 到时间点 N p + l N_p + l Np+l 的数据复制。 类似地,该过程也应用于测试试次。

为了保证大于 N p N_p Np 的数据点不被测试,不同于训练试次,测试试次中超出 N p N_p Np 的数据点会用零填充。

X l = [ X l ′ , O N c h × l ] (2) X_l = \begin{bmatrix} X_l', O^{N_{ch} \times l} \end{bmatrix} \tag{2} Xl=[Xl,ONch×l](2)
其中, X l ′ ∈ R N c h × ( N p − l ) X_l' \in \mathbb{R}^{N_{ch} \times (N_p - l)} XlRNch×(Npl) 表示从时间点 l + 1 l+1 l+1 N p N_p Np 的数据复制。

2.2 脑电数据子空间正交投影

在 SSVEP-BCI 任务中,用户通过注视不同频率闪烁的视觉刺激(如屏幕上的闪烁方块或 LED 灯)来产生对应频率的脑电响应。系统的目标是从原始 EEG 数据中提取这些 SSVEP 相关的成分,并区分不同频率对应的信号,以实现意图识别。由于 EEG 信号本身包含各种背景噪声(如肌电噪声、工频干扰等),通过投影到特定的子空间,可以突出 SSVEP 相关的成分,抑制无关信号。

TDCA算法通过QR分解正余弦参考信号模板获得正交基 Q Q Q 构建正交投影矩阵 P P P,对增强的SSVEP数据进行子空间投影。

首先, Q Q Q 来源于对第 i i i 个刺激频率 f i f_i fi的正弦-余弦参考信号 Y i Y_i Yi 的 QR 分解4, QR分解可将一个矩阵分解为正交矩阵 Q Q Q 与上三角矩阵 R R R 的乘积:

Y i = Q R (3) Y_i = QR \tag{3} Yi=QR(3)

Y i = [ sin ⁡ ( 2 π f i t T ) cos ⁡ ( 2 π f i t T ) ⋮ sin ⁡ ( 2 π N h f i t T ) cos ⁡ ( 2 π N h f i t T ) ] T , t = [ 1 / f s , ⋯   , N p / f s ] T (4) Y_i = \begin{bmatrix} \sin \left(2\pi f_i t^T\right) \\ \cos \left(2\pi f_i t^T\right) \\ \vdots \\ \sin \left(2\pi N_h f_i t^T\right) \\ \cos \left(2\pi N_h f_i t^T\right) \end{bmatrix}^T, t = \left[1/f_s, \cdots, N_p / f_s\right]^T \tag{4} Yi= sin(2πfitT)cos(2πfitT)sin(2πNhfitT)cos(2πNhfitT) T,t=[1/fs,,Np/fs]T(4)
其中, N h N_h Nh为谐波数量, f s f_s fs 为采样率。

得到正交矩阵后,可构建正交投影矩阵 P P P

P = Q T Q (5) P=Q^TQ\tag{5} P=QTQ(5)

随后,增强的 EEG 试次被投影到参考信号生成的投影子空间上:

X ~ p = X ~ P i (6) \tilde{X}_p = \tilde{X}P_i \tag{6} X~p=X~Pi(6)

对于训练和测试试验,进一步构建了二次增强的 EEG 试验:

X a = [ X ~ , X ~ p ] (7) X_a = \left[\tilde{X}, \tilde{X}_p\right] \tag{7} Xa=[X~,X~p](7)

2.3 二维Fisher判别准则

二维Fisher判定准则(也称为Fisher线性判别分析,LDA的二维推广)是一种基于统计的模式分类方法,旨在通过投影将高维数据(这里是二维)映射到一维直线,使得同类样本尽可能聚集,不同类样本尽可能分离。其核心思想是最大化类间散度与类内散度的比值,从而找到最优投影方向

TDCA算法的最后一步即为将正交投影前后的脑电数据进行拼接,并通过二维Fisher判别准则寻求所有刺激类别试次的投影方向,由此生成最终的空间滤波器。

假设所有类别的数目为 N c N_c Nc,每个类别的试次数目为 N t N_t Nt,则类间差分矩阵和类内差分矩阵 H b ∈ R N c h × ( 2 N c ∗ N p ) H_b\in\mathbb{R}^{N_{ch} \times (2N_c*N_p)} HbRNch×(2NcNp)和类间差分矩阵 H w ∈ R N c h × ( 2 N t ∗ N p ) H_w\in\mathbb{R}^{N_{ch} \times (2N_t*N_p)} HwRNch×(2NtNp)被定义为:
H b = 1 N c [ X ˉ a 1 − X ˉ a a , ⋯   , X ˉ a N c − X ˉ a a ] H w = 1 N t [ X a ( 1 ) − X ˉ a ( 1 ) , ⋯   , X a ( N t ) − X ˉ a ( N t ) ] (8) H_b = \frac{1}{\sqrt{N_c}} \left[ \bar{X}_a^1 - \bar{X}_a^a, \cdots, \bar{X}_a^{N_c} - \bar{X}_a^a \right] \\[10pt] H_{w} = \frac{1}{\sqrt{N_t}} \left[ X_a^{(1)} - \bar{X}_a^{(1)}, \cdots, X_a^{(N_t)} - \bar{X}_a^{(N_t)} \right]\tag{8} Hb=Nc 1[Xˉa1Xˉaa,,XˉaNcXˉaa]Hw=Nt 1[Xa(1)Xˉa(1),,Xa(Nt)Xˉa(Nt)](8)

其中, X ˉ i \bar{X}^i Xˉi X ˉ ( i ) \bar{X}^{(i)} Xˉ(i) 分别表示第 i i i 类的二维类中心和第 i i i 个样本的类中心。上标 a a a 表示所有类, X ˉ a a \bar{X}_a^a Xˉaa 由式(9)计算得到:

X ˉ a a = 1 N t ∑ i = 1 N t X a ( i ) (9) \bar{X}_a^a = \frac{1}{N_t} \sum_{i=1}^{N_t} X_a^{(i)} \tag{9} Xˉaa=Nt1i=1NtXa(i)(9)

随后,使用以下 Fisher 准则推导投影方向:

Maximize ⁡ W t r ( W T S b W ) t r ( W T S w W ) (10) \begin{array}{cc} \underset{W}{\operatorname {Maximize}} & \displaystyle \frac{tr(W^T S_b W)}{tr(W^T S_w W)} \tag{10} \end{array} WMaximizetr(WTSwW)tr(WTSbW)(10)

其中,散度矩阵 S b S_b Sb S w S_w Sw的形式为:

S b = H b H b T S w = H w H w T (11) S_b = H_b H_b^T \\[10pt] S_w = H_w H_w^T \tag{11} Sb=HbHbTSw=HwHwT(11)

通过利用投影矩阵的幂等性(即 P 2 = P P^2 = P P2=P),式(10)可改写为:

Maximize ⁡ W t r [ W T H b ′ ( P b + I ) H b T W ] t r [ W T H w ′ ( P w + I ) H w T W ] (12) \begin{array}{cc} \underset{W}{\operatorname {Maximize}} & \dfrac{tr\left[W^T H_b'(P_b + I) H_b^T W\right]}{tr\left[W^T H_w'(P_w + I) H_w^T W\right]} \tag{12} \end{array} WMaximizetr[WTHw(Pw+I)HwTW]tr[WTHb(Pb+I)HbTW](12)

其中, H b ′ H_b' Hb H w ′ H_w' Hw 由式(8)中的 X ~ \tilde{X} X~ 构成。对于投影矩阵, P b = ⊕ i = 1 N c P i P_b = \oplus_{i=1}^{N_c} P_i Pb=i=1NcPi P w = ⊕ i = 1 N c ⊕ j = 1 N b P i P_w = \oplus_{i=1}^{N_c} \oplus_{j=1}^{N_b} P_i Pw=i=1Ncj=1NbPi,其中 ⊕ \oplus 表示直和, N b N_b Nb 为块的数量。


通过使用空间滤波器将测试脑电试次与各个类别模板从二维矩阵降维至一维向量,最后使用皮尔森相关系数求取各个类别的相关系数完成频率识别过程。

实现代码: https://github.com/YuDongPan/Canonical_Classifier

3. 实验结果

3.1 数据集与数据预处理

  • Benchmark数据集5:
    研究团队: 清华大学高小榕教授脑机接口课题组
    采集设备: AgCl湿电极脑电帽采集系统: Synamps2 EEG system (Neuroscan, Inc)
    采集环境: 脑电数据由电磁屏蔽室中的无线放大器采集
    被试信息:共35位被试,包含17名女性被试与18名男性被试,平均年龄为22岁,均视力正常或经过视力矫正
    目标信息:共40目标,频率范围为8-15.8Hz, 以0.2Hz为频率间隔,相位范围为0-1.5pi,以0.5pi为相位间隔
    采样率: 设备原始采样率为1000Hz, 便于算法分析且保留足量的高频成分降采样到250Hz
    通道: 采集了全脑64个导联信息,包括覆盖枕区的9个通道(O1, Oz, O2, PO3, POZ, PO4, PZ, PO5 与 PO6)
    单被试试次数目: 40类别 × 6轮次=240试次
    试次时长: 0.5s(引导期)+ 4s (闪烁呈现期) + 0.5s (休息期)

在这里插入图片描述

  • BETA数据集6:
    研究团队: 清华大学高小榕教授脑机接口课题组
    采集设备: AgCl湿电极脑电帽采集系统: Synamps2 EEG system (Neuroscan, Inc)
    采集环境: 为了记录真实场景中的脑电图数据,脑电数据是在电磁屏蔽室外记录。
    被试信息:共70位被试,包含42名女性被试与28名男性被试,平均年龄为25岁,均视力正常或经过视力矫正
    目标信息:共40目标,频率范围为8-15.8Hz, 以0.2Hz为频率间隔,相位范围为0-1.5pi,以0.5pi为相位间隔
    采样率: 设备原始采样率为1000Hz, 便于算法分析且保留足量的高频成分降采样到250Hz
    通道: 采集了全脑64个导联信息,包括覆盖枕区的9个通道(O1, Oz, O2, PO3, POZ, PO4, PZ, PO5 与 PO6)
    单被试试次数目: 40类别 × 3轮次=120试次
    试次时长:
    – S1-S15: 0.5s(引导期)+ 2s (闪烁呈现期)+ 0.5s (休息期)
    – S16-S70: 0.5s(引导期)+ 3s (闪烁呈现期)+ 0.5s (休息期)

在这里插入图片描述

  • 数据预处理:
    通道筛选:两个数据集均包括五个子集情况,含中央枕部区域 (Nch=3、Oz、O1和O2)、经典枕部区域 (Nch = 9, Pz, POz, PO3/4, PO5/6, Oz 和O1/2)、枕部区域 (Nch = 21, Pz, P1/2, P3/4, P5/6, P7/8, POz, PO3/4, PO5/6, PO7/8, Oz, O1/2, 和 CB1/2), 额叶-枕叶区域 (Nch = 30, CPz, CP1/2, CP3/4, CP5/6, TP7/8, Pz, P1/2, P3/4, P5/6, P7/8, POz, PO3/4, PO5/6, PO7/8, Oz, O1/2, 和 CB1/2), and 所有通道 (Nch = 64)
    视觉延迟校准:Benchmark中从闪烁呈现期中剔除头0.4s数据,BETA数据集中移除试次中闪烁呈现期头0.13s数据
    时间窗口选取:0.2s - 1.0s, 以0.2s为时间间隔,覆盖常用的时间窗口长度大小。
    验证方法:留一轮次法。对于每个被试的数据,其中Nb - 1个轮次数据为训练集,剩余轮次数据作为测试集。如1s窗长的情况下Benchmark中训练数据维度为(40 × 9 × 250 × 5),测试数据维度为(40 × 9 × 250 × 1)。其中40代表类别数目,9为电极数目,250为采样点个数,5和1为轮次数目。

3.2 电极通道数量对分类结果的影响

在这里插入图片描述
上图4展示了Ensmble TRCA与TDCA算法在不同电极通道配置下的ITR性能对比结果。

从图中可以观察到,无论是在 Benchmark 数据集(A)还是 BETA 数据集(B)上,TDCA(红色柱状)始终表现优于 Ensemble TRCA(蓝色柱状),在所有测试条件下均显著提升了 ITR(信息传输速率)。

随着使用的 EEG 通道数的增加,脑区覆盖范围的扩大,即从中央枕叶(3 通道)到全通道(64 通道)逐步增加,Ensemble TRCA(蓝色柱状)与TDCA(红色柱状)的ITR 均得到了显著提升。

在所有通道配置下,TDCA 的性能均显著优于 Ensemble TRCA性能,且 p 值均达到显著水平(p < 0.001),证明TDCA算法相比于曾经的SSVEP频率识别算法霸主Ensemble TRCA更有望应用于仅具有少量通道的可穿戴便携设备上。

3.3 不同训练轮次对分类性能的影响

在这里插入图片描述
上图5展示了Ensmble TRCA与TDCA算法在不同训练轮次下的ITR性能对比结果。

从图中可以看出,随着训练轮次的数据越多(从 1 到 5 逐步增加),TDCA 和 Ensemble TRCA 的ITR性能均有所提升。

在 Benchmark 数据集中,两个算法使用5 个训练块的 ITR 远高于 使用1 个训练块;在BETA数据集中,两个算法使用3个训练块的ITR远高于使用1个训练块,表明 TDCA 和 Ensemble TRCA 都受益于更多训练数据。

但TDCA相比于Ensmble TRCA对数据量的依赖性更小,例如,TDCA即使在训练数据较少(3 个训练块)时仍表现更佳:

  • Benchmark 数据集:TDCA = 219.7 ± 8.75 bpm,Ensemble TRCA = 191.64 ± 11.06 bpm

  • BETA 数据集:TDCA = 173.31 ± 10.13 bpm,Ensemble TRCA = 148.81 ± 10.11 bpm

这表明更多训练数据有助于提高SSVEP分类算法的 ITR,但 TDCA 在所有训练条件下均优于 Ensemble TRCA,并且所有条件下 p 值均达到显著水平(p < 0.001),展现出更强的分类能力。其在少数据量下的优越分类性能得益于时空延拓数据增强与正交投影增强方法。

3.4 不同分类算法的性能对比

在这里插入图片描述
图 6 展示了 TDCA 与其他分类方法的 ITR 对比结果,表明 TDCA 在 Benchmark 和 BETA 数据集上均表现最佳,显著优于所有对比方法。

具体而言,在 Benchmark 数据集中,表现最好的对比方法是 msTRCA,其最大平均 ITR 为 222.00 ± 12.68 bpm,而在 BETA 数据集中,扩展 CCA(extended CCA)取得了最佳表现,其最大平均 ITR 为 155.04 ± 7.94 bpm。

相比之下,TDCA 在所有数据长度条件下均保持最高的 ITR,进一步验证了其在 SSVEP 分类任务中的优势。统计分析结果表明,TDCA 与所有其他方法的 ITR 差异均具有统计学显著性(p < .001),这一结果不仅说明 TDCA 在不同数据集上的适用性更强,同时也表明其分类能力和稳定性在多种实验条件下均保持一致,为 SSVEP-BCI 频率识别提供了一种更高效的方法。

3.5 在线实验环境下的分类性能

在这里插入图片描述
表I展示了在线实验中不同被试个体的ITR性能对比结果。

从表中可以看出,TDCA算法相比于Ensemble TRCA展现了显著的优势。首先,TDCA的整体性能明显优于Ensemble TRCA,平均ITR达到了251.8±17.9 bpm,显著高于Ensemble TRCA的207.4±25.3 bpm。这表明,TDCA在整体应用中具备更高的效率和准确性。

其次,TDCA对于个体差异性表现出较强的适应性,尤其在BCI性能较弱的被试中效果尤为突出。以S3和S4为例,TDCA的提升效果十分明显:S3的ITR从93.6 bpm增加至158.0 bpm,提升幅度达到68.8%;而S4的ITR从72.7 bpm增加至157.5 bpm,提升幅度更是达到116.6%。这些数据表明,TDCA在提高低效系统性能方面具有显著优势。

然而,对于表现较好的被试,TDCA的改进效果则呈现出天花板效应。例如,S7在两种算法下的ITR均为346.8 bpm,而S12的ITR仅从301.9 bpm微增至306.4 bpm,增幅仅为1.5%。这说明,当BCI系统已经达到较高的性能水平时,TDCA的提升效果有限。

总体来看,TDCA在提升低效系统性能方面具有明显的优势,但对于已经接近性能上限的系统,其优化空间相对较小。因此,TDCA可作为改善低效BCI系统的有效方案,但在实际应用中,算法的选择应结合用户的基线性能进行,以确保能够最大化提升效果。

4. 结论与展望

本研究提出了一种新的频率识别方法——任务判别成分分析(TDCA),旨在提升SSVEP-BCI系统的性能。

与传统的Ensemble TRCA方法相比,TDCA通过数据驱动的方式学习共同的时空滤波器,避免了按类别学习投影方向的复杂性,也不需要使用集成技术。因此,TDCA能够更高效地进行信号分类,且在多项验证中,尤其是在两个基准数据集上的实验中,均表现出了显著优于集成TRCA和其他竞品方法的优势。

从方法论角度来看,TDCA与Ensemble TRCA有着显著的区别。TDCA不仅优化空间滤波器,还优化时空滤波器,这使得它能够有效处理由刺激频率引起的时延问题,而Ensemble TRCA则仅优化空间滤波器,忽视了时延的细微差异。TDCA的这种时空滤波器优化方法,已经被广泛应用于其他BCI范式中,如运动想象BCI,能够更好地解决从提示到任务相关脑信号的时延问题。

此外,TDCA在实际应用中也表现出了明显的优势。与集成TRCA相比,TDCA在使用相同数量的通道时,能够显著降低系统的成本和配置要求。例如,使用经典的九通道配置,TDCA能够达到与使用21个通道的集成TRCA相当的性能。此外,TDCA还能够减少所需的标定数据块数,进一步减少了系统的标定负担,有助于提升用户体验。特别是在干电极系统的应用中,TDCA有助于提升其性能,这对于实际应用中易于使用且更具实用性的干电极系统具有重要意义

本研究为TDCA的进一步发展和应用奠定了基础,未来的研究可以根据实际需求对TDCA进行进一步优化。例如,对于需要高可靠性控制的应用(如无人机的BCI控制),可以结合动态停止策略来提高分类准确度;而在某些对同步性要求不高的应用中,TDCA还可以与异步策略结合使用,以区分有意控制状态与非控制状态。此外,TDCA在其他SSVEP-BCI范式中的潜力也值得探索,尤其是在灵活空间信息解码方面。

总的来说,TDCA作为一种创新的方法,不仅在提升SSVEP-BCI性能方面展现了巨大的潜力,也为未来的脑机接口技术应用提供了新的思路和方向。随着相关技术的发展,TDCA有望成为高效、低成本、易操作的BCI解决方案之一。

5. 参考文献


  1. M. Nakanishi, Y. Wang, X. Chen, Y. -T. Wang, X. Gao and T. -P. Jung, “Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis,” in IEEE Transactions on Biomedical Engineering, vol. 65, no. 1, pp. 104-112, Jan. 2018, doi: 10.1109/TBME.2017.2694818.https://ieeexplore.ieee.org/abstract/document/7904641/ ↩︎ ↩︎

  2. Liu, Bingchuan, et al. “Improving the performance of individually calibrated SSVEP-BCI by task-discriminant component analysis.” IEEE Transactions on Neural Systems and Rehabilitation Engineering 29 (2021): 1998-2007https://ieeexplore.ieee.org/abstract/document/9541393 ↩︎

  3. Zhang Y, Xu P, Cheng K, et al. Multivariate synchronization index for frequency recognition of SSVEP-based brain–computer interface[J]. Journal of neuroscience methods, 2014, 221: 32-40.https://www.sciencedirect.com/science/article/abs/pii/S0165027013002677 ↩︎

  4. Lin Z, Zhang C, Wu W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J]. IEEE transactions on biomedical engineering, 2006, 53(12): 2610-2614. https://ieeexplore.ieee.org/abstract/document/4015614/ ↩︎

  5. Wang Y, Chen X, Gao X, et al. A benchmark dataset for SSVEP-based brain–computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 25(10): 1746-1752. https://ieeexplore.ieee.org/abstract/document/7740878 ↩︎

  6. Liu B, Huang X, Wang Y, et al. BETA: A large benchmark database toward SSVEP-BCI application[J]. Frontiers in neuroscience, 2020, 14: 627. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.00627/full ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值