AI幻觉-大模型

1、何为AI幻觉?

学术:一本正经地胡说八道(指模型生成与事实不符、逻辑断裂或脱离上下文的内容,本质是统计概率驱动的“合理猜测” )。

事实性幻觉:指模型生成的内容与可验证的现实世界事实不一致。

忠实性幻觉:指模型生成的内容与用户的指令或上下文不一致。

提问:糖尿病患者可以通过吃蜂蜜代替糖吗?
回答分析
事实性幻觉是的,蜂蜜是天然的,可以帮助糖 尿病患者稳定血糖水平。错误:蜂蜜虽然是天然食品,但仍然含有大量果糖和 葡萄糖,会升高血糖水平,不适合糖尿病患者代替糖 使用。
忠实性幻觉蜂蜜富含维生素和矿物质,对提高 免疫力很有帮助,因此是一种健康 的食品。偏题:回答内容虽无事实错误,但与提问“糖尿病患 者是否可以用蜂蜜代替糖”无关,未忠实于用户意图。

2、AI为什么会产生幻觉?

  • 数据偏差:训练数据中的错误或片面性被模型放大(如医学领域过时论文导致错误结论)
  • 泛化困境:模型难以处理训练集外的复杂场景(如南极冰层融化对非洲农业的影响预测)
  • 知识固化:模型过度依赖参数化记忆,缺乏动态更新能力(如2023年后的事件完全虚构)
  • 意图误解:用户提问模糊时,模型易“自由发挥”(如“介绍深度学习”可能偏离实际需求)

3、音乐为什么没有幻觉?

  • 音乐的主观性和多样性:音乐是一种高度主观的艺术形式,人们对音乐的审美和理解有很大的 差异。一段音乐是否“合理”或“正确”,往往取决于文化背景、个人偏好和上下文
  • 音乐的抽象性:音乐本质上是抽象的,不像文本或图像那样直接对应现实世界的具体事物。文本中的“幻觉”通常是因为模型生成的内容与事实不符,而音乐本身往往缺少明确的事实基础
  • 音乐的可感知性差异:音乐是时间性的艺术形式,即使某些部分听起来不协调或不符合预期, 它们也可能在整个作品的上下文中变得合理。相比之下,文本或图像中的问题往往是瞬间可见 的,容易引起注意
  • 音乐“幻觉”的潜在表现:逻辑断裂的歌词、结构混乱的旋律、风格混杂的编曲

4、AI幻觉的潜在风险

  • 信息污染风险:由于DeepSeek的低门槛和普及度高,大量AI生成内容涌入中文互联网,加剧 了虚假信息传播的“雪球效应”,甚至污染下一代模型训练数据
  • 信任危机:普通用户难以辨别AI内容的真实性,可能对医疗建议、法律咨询等专业场景的可 靠性产生长期怀疑
  • 控制欠缺:DeepSeek的对齐工作较其他闭源大模型有所欠缺,其开源特性也允许使用者随意 使用,可能会成为恶意行为的工具
  • 安全漏洞:若错误信息被用于自动化系统(如金融分析、工业控制),可能引发连锁反应

5、普通用户应对AI幻觉的三种方式

(1)联网搜索:”请使用联网功能“、联网功能选项

(2)双AI验证/大模型协作:例如,利用DeepSeek生成答案后,再应用其他大模型进行审查,相互监督,交叉验证

(3)提示词工程:

  • 知识边界限定:通过时空维度约束降低虚构可能性(本质:约束大模型)

1. 时间锚定法:“基于2023年之前的公开学术文献,分步骤解释量子纠缠现象" → 规避未来时态虚构

2. 知识锚定法:”基于《中国药典》回答,若信息不明确请注明“暂无可靠数据支持” →限定权威来源

3. 领域限定符:“作为临床医学专家,请列举FDA批准的5种糖尿病药物” → 添加专业身份限定

4. 置信度声明:“如果存在不确定性,请用[推测]标签标注相关陈述“ → 减少绝对化错误断言

5. 上下文提示:“根据《2024全球能源转型报告》(国际能源署,2024年1月发布)显示:”2030年 光伏发电成本预计降至0.02美元/千瓦时,但储能技术突破仍是普及瓶颈。“请基于此数据,分析中国 西部光伏基地发展的三个关键挑战,并标注每个挑战与原文结论的逻辑关联。 → 嵌入权威数据片段

6. 生成参数协同控制:“请以temperature=0.3的严谨模式,列举2024年《柳叶刀》发表的传染病研究”

  • 对抗性提示:强制暴露推理脆弱点,用户可见潜在错误路径(本质:大模型自我审查)

1. 植入反幻觉检测机制: "请用以下格式回答:- 主要答案(严格基于公开可验证信息)- [反 事实检查] 部分(列出可能导致此答案错误的3种假设)“

2. 预设验证条件,迫使模型交叉检查信息:“请先回答“量子纠缠能否证明灵魂存在?”,然 后从以下角度验证答案的可靠性: 1. 物理学界主流观点; 2. 近五年相关论文数量; 3. 是否存在可重复实验证据。 ”

3. 链式验证:请完成以下验证链:1. 陈述观点:______2. 列出支撑该观点的三个权威数据源 3. 检查每个数据源是否存在矛盾信息4. 最终结论(标注可信度等级)

6、应对AI幻觉的技术方案

  • RAG框架:利用检索增强生成(如先搜索权威数据库,再生成答案)
  • 外部知识库:结合外部知识库,砍通用知识,强化垂直领域
  • 精细训练:针对不同任务类型进行具体的微调或强化
  • 评估工具:开发高效的自动化AI幻觉识别工具,对生成内容进行及时验证

7、如何应对AI幻觉?

  • 三角验证法:交叉比对多个AI回答或权威来源。
  • 警惕“过度合理”:越细节丰富的回答越需谨慎(如AI虚构论文标题与作者)
  • 理解幻觉,享受幻觉:理解幻觉的特点和应对方法,享受幻觉带来的创意灵感

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值